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67. Note on the Wiener Compactification and
the H?.Space of Harmonic Functions

By Hiroshi TANAKA™ and Joel L. SCHIFF**)

(Communicated by Koésaku YosIDA, M. J. A, June 14, 1983)

Introduction. Let R be a hyperbolic Riemann surface. We
denote by HB(R) (resp. HB'(R)) the class of all bounded harmonic
(resp. quasibounded harmonic) functions on B. For p (1<p<o0), we
denote by H?(R) the class of all harmonic functions % on R such that
|u|r has a harmonic majorant. Then Naim [1] obtained in terms of
the Martin boundary that HB(R)C H?(R)C HB’'(R) for all p. On the
other hand the second author [3] proved in terms of Wiener boundary
that dim HB(R) < oo implies HB(R)=H?(R) for all p. In this note we
shall prove that if any two classes of HB(R), H?(R) and HB’'(R) coin-
cide, then we necessarily have dim HB(R)<oo. Thus we obtain that
dim HB(R) <o if and only if HB(R)=H?(R) for some p and hence for
all p. The first author wishes to express his thanks to Prof. A.
Yoshikawa for valuable discussions on L?-gpaces.

1. The H?.space of harmonic functions. Let R be a hyperbolic
Riemann surface and let z, be a fixed point in R once for all. Let
{R.}z-1 be a regular exhaustion of R such that z, is contained in all
R,’s. We denote by y,=pf" the harmonic measure on the boundary

dR,. Note that j dp,=1 for all n.
dRn

Definition. A harmonic function % on R belongs to H?(R), 1<p
< o0, if and only if the p-mean values

1/p
ltyn=({, 1ids)
are uniformly bounded in n. Set H*(R)=HB(R), the space of all

bounded harmonic functions on E.

Theorem 1 (Naim [1]). (i) wue H?(R), 1=<p<oo, if and only if
|ul® has a harmonic majorant.

(il) HB(R)CH?(R)CHB'(R), 1<p<oo.

2. Lemma on L?.space. Let X be a compact Hausdorff space
and g be a positive (Radon) measure on X. We denote by Sy the
support of . We note that x € X belongs to Sy if and only if x(V)>0
for any open neighborhood V of x. We denote by L? = L?(X, p) the
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equivalence class of all real-valued p-integrable functions on X with
1<p<co and by L*=L~(X, y) the equivalence class of all essentially
bounded measurable functions on X. We note that L*cL? for all p
and ¢ with 1<p<¢< .

Lemma. (i) If Sy is a finite set, then L*=L? for all p and q
with 1< p<gL oo,

(i) If Spis not a finite set, then

L g M L'QL'cL*g \UJ L*QL}
1<p<oo 1<p<oo
with 1<p<g<oo.

Proof. (i) Suppose Sy is a finite set. Then we have L'=L~
and hence L?=L* for all p and q.

(i) Suppose Sy is not a finite set. Let p and g be any fixed so
that 1<p<¢<oo. Since X is a normal space, we can find a family
{B,}r-, of disjoint Borel sets in X such that x(B,)>0 for all n.

(a) The case of ¢<<oo: In this case we may assume that 0<<u(B,)
<2-"/@-» (y=1,2, -..). For each n we choose a,>0 so that aZu(B.,)
=1/2". If we set f=> 7, a,Xs, (X5, is the characteristic function of
B,), then f belongs to L*—L“.

(b) The case of ¢=oo: In this case we may assume that 0<u(B,)
<1/n! (n=12,...). If we set f=2.,2"%;, then f does not belong
to L~. However, since

[rrau=3 @yuB)sexp @)<co  forall p A<p<oo)

we see that fe L?—L.
By the aid of (a) and (b) we.can show that the first four inclusion
relations are strict. On the other hand it follows from (a) that, for

each k=1, 2, ..., there is a non-negative f, in L'—L'** with Ifkdy

=1/2*. If we set f=2 ., [ then we see that f belongs to L'—L'*"*
for all £ and hence L'—\J;., L'*"*+#¢. Since U, pec.. LP =5 L'VE,
we complete the proof.

3. Main result. We shall denote by R" the Wiener compacti-
fication of R and by 4% the harmonic boundary of R¥ (cf. [2]). Let g,
be the harmonic measure on 4% with respect to ze R and R%. Set
p=tt,, in the following. We note that 4”7 is a compact Hausdorff space
and y is a positive measure on 4% with u(4")=1.

Definition. We define a linear operator T on L'(47, ) by

TH@=| OO  @eh.
Theorem 2 (cf. [3]). T is a linear bijection of L'(4Y, p) onto
HB'(R). Furthermore

T, py=H"R)  ([A<p<eco),
T(L=(4%, p))=HB(R).
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Proof. It follows from Theorem 4D in [2] that T is a linear bijec-
tion. The second half of the theorem follows from Theorem 4 in [3].
We denote by C'(4%, p) the equivalence class of the family of all
real-valued, integrable and continuous (in the extended sense) func-
tions on 4%. For any p (1<pZoo) we set
Cr(d", w)=L2(4", ) N C'(A¥, ).

Theorem 3. C'(4%, p)=L'(4", p).

Proof. Let feL'(4”, ) be any fixed. Since (I'f)(z) can be con-
tinuously extended over 4" (c¢f. Theorem 4D, IV, in [2]), we again
denote by T'f the continuous extension of (7'f)(2) over 47. Further-
more we denote by Sf the restriction of Tf to 4. Then, by definition,
S,is a linear bijection of L'(4”, x) onto C'(47, ). This completes the
proof.

Corollary. C?(4", p)=L*(4", ) for all p A<p= o).

We shall denote by O%; the class of all hyperbolic Riemann sur-
faces such that HB(R) has at most dimension n (n=1,2, ---). Then
it is known (cf. [2]) that R belongs to O%; if and only if 47 consists of
at most » points.

Theorem 4. All of the following inclusion relations are identical
or strict accordingly as R belongs to \ ;_, O%p or not:

HB(R)C (" HYR)CHYR)CH"(R)C \J H*(R)cHB'(R)

1<g<eo 1<p<eo
A<p<g< o).
Proof. Since Sy equals 47 (cf. [2]), the theorem is an immediate
consequence of Theorem 2 and Lemma.
Remark. (i) If Risa hyperbolic plane domain, then dim HB(R)
=oco. Thus the six classes in Theorem 3 are distinct.
(ii) The second author [3] proved that dim HB(R)<oo implies
HB(R)=HB’'(R) and hence H?(R)=HB(R) for all p 1<p<o0).
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