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Note on the Wiener Compactification and
the HP.Space of Harmonic Functions

By Hiroshi TANAKA*) and Joel L. SCHIFF**)

(Communicated by K.Ssaku YOSIDA, M.J.A., June 14, 1983)

Introduction. Let R be a hyperbolic Riemann surface. We
denote by HB(R) (resp. HB’(R)) the class of all bounded harmonic
(resp. quasibounded harmonic) functions on R. For p (l(p(c), we
denote by H(R) the class of all harmonic functions u on R such that
lu] has a harmonic majorant. Then Naim [1] obtained in terms of
the Martin boundary that HB(R)cH(R)HB’(R) for all p. On the
other hand the second author [3] proved in terms of Wiener boundary
that dim HB(R)(o implies HB(R)=H(R) for all p. In this note we
shall prove that if any two classes of HB(R), H(R) and HB’(R) coin-
cide, then we necessarily have dim HB(R)o. Thus we obtain that
dim HB(R) if and only if HB(R)=H(R) for some p and hence for
all p. The first author wishes to express his thanks to Prof. A.
Yoshikawa for valuable discussions, on L-spaces.

1. The H.space of harmonic functions. Let R be a hyperbolic
Riemann surface and let z0 be a fixed point in R once for all. Let
{R}:= be a regular exhaustion of R such that z0 is contained in all
R’s. We denote by p= the harmonic measure on the boundary

R. Note that d=l for all n.
J

Definition. A harmonic function u on R belongs to H(R), lp
(, if and only if the p-mean values

[U],n
are uniformly bounded in n. Set H(R)=HB(R), the space of all
bounded harmonic functions on R.

Theorem 1 (Naim [1]). u H(R), lgp( i/ and only if
u[ has a harmonic ma]orant.

(ii) HB(R)H(R)cHB’(R),
2. Lemma on L.space. Let X be a compact Hausdorff space

and Z be a positive (Radon) measure on X. We denote by SZ the
support of Z. We note that x e X belongs to SZ if and only if z(V)0
for any open neighborhood V of x. We denote by L’= L(X, )the
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equivalence class of all real-valued p-integrable functions on X with
1__< p c and by L-L(X,/) the equivalence class of all essentially
bounded measurable functions on X. We note that LqcL or all p
and q with l<=pq<= oo.

Lemma. (i) If SI is a finite set, then L=L for all p and q
with l<=pq<=.

(ii) If SZ is not a finite set, then

L LLL’ L’L
l<p<o l<p<

with
Proof. (i) Suppose S/ is a finite set. Then we have L=L

and hence L" =L for all p and q.
(ii) Suppose Sp is not a finite set. Let p and q be any fixed so

that l__<pq__<c. Since X is a normal space, we can find a family
{B}__ o disjoint Borel sets in X such that p(B)0 for all n.

(a) The case of q c In this case we may assume that 0 Z(Bn)
2-/(-) (n=l, 2, ...). For each n we choose a0 so that ag(B)
--1/2n. If we set f=:= anZ ( is the characteristic unction of
B), then f belongs to L-L.

(b) The case of q= c In this case we may assume that 0p(B)
<=l/n! (n=1,2, ...). If we set f=,o__ 2;, then f does not belong
to L. However, since

f,d= (.)’(B)<exp (.,)<oo for all p (l_<_p<c)
=1

we see that f e/.,-L.

By the aid of (a) and (b) we.can show that the first four inclusion

relations are strict. On the other hand it follows from (a) that, for

each/= 1, 2, ., there is a non-negative f in L-2 / with

1/.. If we set f=.Lf, then we see that f belongs to/_,-/.,//

LI+I/or all k and hence L [_)L1 :/:. Since [_)<< L’=[.)L_L//,
we complete the proof.

:. Main result. We shall denote by RW the Wiener compacti-
fication of R and by z the harmonic boundary of R (cf. [2]). Let
be the harmonic measure on z/’ with respect to z e R and R. Set

Z=Zo in the ollowing. We note that z/ is a compact Hausdorff space
and is a positive measure on with Z()= 1.

Definition. We define a linear operator T on Ll(z, Z) by

(Tf)(z) [ f()dl() (z e R).
JAw

Theorem 2 (cf. [3]). T is a linear bi]ection of L(AW,/) onto
HB’(R). Furthermore

T(L(A,/D) H(R) (1<p< oo ),
T(L(AW, tt)) HB(R).
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Proof. It follows from Theorem 4D in [2] that T is, a linear bijec-
tion. The second half of the theorem follows from Theorem 4 in [3].

We denote by C’(W, [)the equivalence class of the family of all
real-valued, integrable and continuous (in the extended sense) func-
tions on Aw. For any p (lp<= oo) we set

C,(J,/)-L(J,/) D C’(z/,/).
Theorem 3. C’(AW, t)-L’(AW, ).
Proof. Let f e L’(AW,/) be any fixed. Since (Tf)(z) can be con-

tinuously extended over A (cf. Theorem 4D, IV, in [2]), we again
denote by Tf the continuous extension of (Tf)(z) over A. Further-
more we denote by Sf the restriction of Tf to A. Then, by definitio.n,
S,is a linear bijection o Lx(Av,/) onto C’(A, [). This completes the
proof.

Corollary. CP(Aw, z)=LP(A, Z) for all p (lp oo).
We shall denote by O the class, of all hyperbolic Riemann sur-

aces such that HB(R) has at most dimension n (n-l, 2, ...). Then
it is known (cf. [2]) that R belongs, to 0 if and only if A consists, of
at most n points.

Theorem 4. All of the following inclusion relations are identical
or strict accordingly as R belongs to --10B or no"

HB(R)c Hq(R)cHq(R)cHp(R)c Hv(R)cHB’(R)
l<q<oo l<p<oo

(lpq oo).
Proof. Since Sp equals A (cf. [2]), the theorem is an immediate

consequence of Theorem 2 and Lemma.
Remark. (i) If R is. a hyperbolic plane domain, then dim HB(R)

--oz. Thus. the six classes in Theorem 3 are distinct.
(ii) The second author [3] proved that dim HB(R)<oo implies

HB(R)=HB’(R) and hence H(R)=HB(R) for all p (l<poo).

References

1 Lumer-Naim, L.: HP-spaces of harmonic functions. Ann. Inst. Fourier, 17,
425-469 (1967).

[2 Sario, L., and M. Nakai: Classification Theory of Riemann Surfaces.
Berlin-Heidelberg-New York, Springer (1970).

3 Schiff, J. L.." HP-spaces of harmonic functions and the Wiener compactifi-
cation. Math. Z., 132, 135-140 (1973).


