67. Note on the Wiener Compactification and the H^p-Space of Harmonic Functions

By Hiroshi TANAKA*) and Joel L. SCHIFF**)

(Communicated by Kôsaku YOSIDA, M. J. A., June 14, 1983)

Introduction. Let R be a hyperbolic Riemann surface. We denote by HB(R) (resp. HB'(R)) the class of all bounded harmonic (resp. quasibounded harmonic) functions on R. For p (1 , we $denote by <math>H^p(R)$ the class of all harmonic functions u on R such that $|u|^p$ has a harmonic majorant. Then Naim [1] obtained in terms of the Martin boundary that $HB(R) \subset H^p(R) \subset HB'(R)$ for all p. On the other hand the second author [3] proved in terms of Wiener boundary that dim $HB(R) < \infty$ implies $HB(R) = H^p(R)$ for all p. In this note we shall prove that if any two classes of HB(R), $H^p(R)$ and HB'(R) coincide, then we necessarily have dim $HB(R) < \infty$. Thus we obtain that dim $HB(R) < \infty$ if and only if $HB(R) = H^p(R)$ for some p and hence for all p. The first author wishes to express his thanks to Prof. A. Yoshikawa for valuable discussions on L^p -spaces.

1. The H^p -space of harmonic functions. Let R be a hyperbolic Riemann surface and let z_0 be a fixed point in R once for all. Let $\{R_n\}_{n=1}^{\infty}$ be a regular exhaustion of R such that z_0 is contained in all R_n 's. We denote by $\mu_n = \mu_{z_0}^{R_n}$ the harmonic measure on the boundary ∂R_n . Note that $\int_{\partial R_n} d\mu_n = 1$ for all n.

Definition. A harmonic function u on R belongs to $H^p(R)$, $1 \le p < \infty$, if and only if the *p*-mean values

$$\|u\|_{p,n} = \left(\int_{\partial R_n} |u|^p d\mu_n\right)^{1/p}$$

are uniformly bounded in *n*. Set $H^{\infty}(R) = HB(R)$, the space of all bounded harmonic functions on *R*.

Theorem 1 (Naim [1]). (i) $u \in H^p(R)$, $1 \leq p < \infty$, if and only if $|u|^p$ has a harmonic majorant.

(ii) $HB(R) \subset H^p(R) \subset HB'(R), 1 .$

2. Lemma on L^p -space. Let X be a compact Hausdorff space and μ be a positive (Radon) measure on X. We denote by $S\mu$ the support of μ . We note that $x \in X$ belongs to $S\mu$ if and only if $\mu(V) > 0$ for any open neighborhood V of x. We denote by $L^p = L^p(X, \mu)$ the

^{*)} Department of Mathematics, Joetsu University of Education, Joetsu.

^{**)} Department of Mathematics, University of Auckland, Auckland, New Zealand.

equivalence class of all real-valued *p*-integrable functions on X with $1 \leq p < \infty$ and by $L^{\infty} = L^{\infty}(X, \mu)$ the equivalence class of all essentially bounded measurable functions on X. We note that $L^{q} \subset L^{p}$ for all p and q with $1 \leq p < q \leq \infty$.

Lemma. (i) If S_{μ} is a finite set, then $L^{p} = L^{q}$ for all p and q with $1 \leq p < q \leq \infty$.

(ii) If $S\mu$ is not a finite set, then

$$L^{\infty} \subseteq \bigcap_{1$$

with 1 .

Proof. (i) Suppose $S\mu$ is a finite set. Then we have $L^1 = L^{\infty}$ and hence $L^p = L^q$ for all p and q.

(ii) Suppose $S\mu$ is not a finite set. Let p and q be any fixed so that $1 \leq p < q \leq \infty$. Since X is a normal space, we can find a family $\{B_n\}_{n=1}^{\infty}$ of disjoint Borel sets in X such that $\mu(B_n) > 0$ for all n.

(a) The case of $q < \infty$: In this case we may assume that $0 < \mu(B_n) \le 2^{-nq/(q-p)}$ $(n=1, 2, \cdots)$. For each *n* we choose $a_n > 0$ so that $a_n^p \mu(B_n) = 1/2^n$. If we set $f = \sum_{n=1}^{\infty} a_n \chi_{B_n}$ (χ_{B_n} is the characteristic function of B_n), then *f* belongs to $L^p - L^q$.

(b) The case of $q = \infty$: In this case we may assume that $0 < \mu(B_n) \le 1/n!$ $(n=1, 2, \dots)$. If we set $f = \sum_{n=1}^{\infty} 2^n \chi_{B_n}$, then f does not belong to L^{∞} . However, since

$$\int f^{p} d\mu = \sum_{n=1}^{\infty} (2^{n})^{p} \mu(B_{n}) \leq \exp(2^{p}) < \infty \quad \text{for all } p \ (1 \leq p < \infty)$$

we see that $f \in L^p - L$.

By the aid of (a) and (b) we can show that the first four inclusion relations are strict. On the other hand it follows from (a) that, for each $k=1, 2, \cdots$, there is a non-negative f_k in $L^1-L^{1+1/k}$ with $\int f_k d\mu = 1/2^k$. If we set $f = \sum_{k=1}^{\infty} f_k$, then we see that f belongs to $L^1-L^{1+1/k}$ for all k and hence $L^1-\bigcup_{k=1}^{\infty}L^{1+1/k}\neq \phi$. Since $\bigcup_{1< p<\infty} L^p = \bigcup_{k=1}^{\infty}L^{1+1/k}$, we complete the proof.

3. Main result. We shall denote by R^w the Wiener compactification of R and by Δ^w the harmonic boundary of R^w (cf. [2]). Let μ_z be the harmonic measure on Δ^w with respect to $z \in R$ and R^w . Set $\mu = \mu_{z_0}$ in the following. We note that Δ^w is a compact Hausdorff space and μ is a positive measure on Δ^w with $\mu(\Delta^w) = 1$.

Definition. We define a linear operator T on $L^1(\Delta^W, \mu)$ by

$$(Tf)(z) = \int_{\mathcal{A}^W} f(\zeta) d\mu_z(\zeta) \qquad (z \in R).$$

Theorem 2 (cf. [3]). T is a linear bijection of $L^1(\Delta^w, \mu)$ onto HB'(R). Furthermore

 $T(L^{p}(\Delta^{w}, \mu)) = H^{p}(R) \qquad (1$ $<math display="block">T(L^{\infty}(\Delta^{w}, \mu)) = HB(R).$ *Proof.* It follows from Theorem 4D in [2] that T is a linear bijection. The second half of the theorem follows from Theorem 4 in [3].

We denote by $C^1(\Delta^w, \mu)$ the equivalence class of the family of all real-valued, integrable and continuous (in the extended sense) functions on Δ^w . For any p (1 we set

 $C^{p}(\Delta^{w}, \mu) = L^{p}(\Delta^{w}, \mu) \cap C^{1}(\Delta^{w}, \mu).$

Theorem 3. $C^{1}(\Delta^{W}, \mu) = L^{1}(\Delta^{W}, \mu).$

Proof. Let $f \in L^1(\Delta^w, \mu)$ be any fixed. Since (Tf)(z) can be continuously extended over Δ^w (cf. Theorem 4D, IV, in [2]), we again denote by Tf the continuous extension of (Tf)(z) over Δ^w . Furthermore we denote by Sf the restriction of Tf to Δ^w . Then, by definition, $S_{\underline{A}}$ is a linear bijection of $L^1(\Delta^w, \mu)$ onto $C^1(\Delta^w, \mu)$. This completes the proof.

Corollary. $C^{p}(\Delta^{w}, \mu) = L^{p}(\Delta^{w}, \mu)$ for all p $(1 \leq p \leq \infty)$.

We shall denote by O_{HB}^n the class of all hyperbolic Riemann surfaces such that HB(R) has at most dimension n $(n=1, 2, \dots)$. Then it is known (cf. [2]) that R belongs to O_{HB}^n if and only if Δ^w consists of at most n points.

Theorem 4. All of the following inclusion relations are identical or strict accordingly as R belongs to $\bigcup_{n=1}^{\infty} O_{HB}^n$ or not:

 $HB(R) \subset \bigcap_{1 < q < \infty} H^q(R) \subset H^q(R) \subset H^p(R) \subset \bigcup_{1 < p < \infty} H^p(R) \subset HB'(R)$ (1 < p < q < ∞).

Proof. Since $S\mu$ equals Δ^{W} (cf. [2]), the theorem is an immediate consequence of Theorem 2 and Lemma.

Remark. (i) If R is a hyperbolic plane domain, then dim $HB(R) = \infty$. Thus the six classes in Theorem 3 are distinct.

(ii) The second author [3] proved that dim $HB(R) < \infty$ implies HB(R) = HB'(R) and hence $H^p(R) = HB(R)$ for all p (1 .

References

- Lumer-Naim, L.: H^p-spaces of harmonic functions. Ann. Inst. Fourier, 17, 425-469 (1967).
- [2] Sario, L., and M. Nakai: Classification Theory of Riemann Surfaces. Berlin-Heidelberg-New York, Springer (1970).
- [3] Schiff, J. L.: H^p-spaces of harmonic functions and the Wiener compactification. Math. Z., 132, 135-140 (1973).