63. Toda Lattice Hierarchy. II

By Kimio Ueno*) and Kanehisa Takasaki**)

(Communicated by Kôsaku Yosida, M. J. A., June 14, 1983)
0. Introduction. This note is a sequel to the preceding paper [1]. Here we shall discuss the l-reduced family, (TL), of the Toda lattice (TL) hierarchy, and shall construct the N-soliton solutions by making use of the Riemann-Hilbert decomposition, which is an infinite dimensional generalization of the classical Riemann-Hilbert problem.

The TL hierarchy was introduced in [1] as follows: Let $x=\left(x_{1}\right.$, $\left.x_{2}, \cdots\right), y=\left(y_{1}, y_{2}, \cdots\right)$ be two time flows. Let $L, M, B_{n}, C_{n}(n=1,2$, \ldots...) be matrices of size $Z \times Z$ of the form

$$
\begin{array}{rlrl}
L & =\sum_{-\infty<j \leq 1} \operatorname{diag}\left[b_{j}(s ; x, y)\right] \Lambda^{j}, & b_{1}(s ; x, y)=1, \\
M & =\sum_{-1 \leq j<+\infty}^{-1 a d g}\left[c_{j}(s ; x, y)\right] \Lambda^{j}, & c_{-1}(s ; x, y) \neq 0, \tag{1}\\
B_{n} & =\left(L^{n}\right)_{+}, & C_{n}=\left(M^{n}\right)_{-} &
\end{array}
$$

(2) $\quad B_{n}=\left(L^{n}\right)_{+}, \quad C_{n}=\left(M^{n}\right)_{\text {. }}$.
(As for the notations, the readers should refer to [1].) Then the TL hierarchy is defined by the following Zakharov-Shabat equations;

$$
\begin{array}{ll}
\partial_{x_{n}} B_{m}-\partial_{x_{m}} B_{n}+\left[B_{m}, B_{n}\right]=0, & \partial_{y_{n}} C_{m}-\partial_{y_{m}} C_{n}+\left[C_{m}, C_{n}\right]=0, \\
\partial_{y_{n}} B_{m}-\partial_{x_{m}} C_{n}+\left[B_{m}, C_{n}\right]=0, & m, n=1,2, \cdots \tag{3}
\end{array}
$$

The hierarchy is linearized by the equations

$$
\begin{align*}
& L W^{(\infty)}=W^{(\infty)} \Lambda, \quad M W^{(0)}=W^{(0)} \Lambda^{-1}, \\
& \partial_{x_{n}} W=B_{n} W, \quad \partial_{y_{n}} W=C_{n} W, \quad W=W^{(\infty)}, W^{(0)}, \quad n=1,2, \cdots . \tag{4}
\end{align*}
$$

As fundamental solution matrices to these equations, one may choose matrices of the form

$$
\begin{align*}
& W^{(\infty)}(x, y)=\hat{W}^{(\infty)}(x, y) \exp \xi(x, \Lambda), \\
& W^{(0)}(x, y)=\hat{W}^{(0)}(x, y) \exp \xi\left(y, \Lambda^{-1}\right), \quad \xi\left(x, \Lambda^{ \pm 1}\right)=\sum_{n=1}^{\infty} x_{n} \Lambda^{ \pm n}, \tag{5}\\
& \hat{W}^{(0)}(x, y)=\sum_{j=0}^{\infty} \operatorname{diag}\left[\hat{w}_{j}^{(0)}(s ; x, y)\right] \Lambda^{ \pm j} .
\end{align*}
$$

Such fundamental solution matrices will be referred to as wave matrices.

The linearization (4) equivalently leads to the bilinear relation

$$
\begin{array}{r}
W^{(\infty)}(x, y) W^{(\infty)}\left(x^{\prime}, y^{\prime}\right)^{-1}=W^{(0)}(x, y) W^{(0)}\left(x^{\prime}, y^{\prime}\right)^{-1} \tag{6}\\
\text { for any } x, x^{\prime}, y, y^{\prime} .
\end{array}
$$

[^0]From this relation, we deduce the existence of τ functions, $\tau(s ; x, y)$, defined by

$$
\begin{align*}
& \hat{w}_{j}^{(\infty)}(s ; x, y)=p_{j}\left(-\tilde{\partial}_{x}\right) \tau .(s ; x, y) / \tau(s ; x, y), \\
& \hat{w}_{j}^{(0)}(s ; x, y)=p_{j}\left(-\tilde{\partial}_{y}\right) \tau(s+1 ; x, y) / \tau(s ; x, y) \tag{7}
\end{align*}
$$

where $p_{j}(x)$ is introduced through $\sum_{j=0}^{\infty} p_{j}(x) \lambda^{j}=\exp \xi(x, \lambda)$. Substituting (7) to (6), the TL hierarchy is converted to Hirota's bilinear equations.

1. l-periodic reduction. Let l be a positive integer. Let us consider a subfamily of the TL hierarchy with the additional constraints

$$
\begin{equation*}
L^{l}=\Lambda^{l}, \quad M^{-l}=\Lambda^{-l} . \tag{8}
\end{equation*}
$$

This subfamily will be referred to as the l-periodic Toda lattice ($\left.(\mathrm{TL})_{l}\right)$ hierarchy. One easily sees that the l-periodic condition (8) yields

$$
\begin{align*}
& {\left[L, \Lambda^{n}\right]=\left[M, \Lambda^{n}\right]=0, \quad\left[W^{(\infty)}, \Lambda^{n}\right]=\left[W^{(0)}, \Lambda^{n}\right]=0,} \tag{9}\\
& \partial_{x_{n}} L=\partial_{y_{n}} L=0, \quad \partial_{x_{n}} M=\partial_{y_{n}} M=0 \quad \text { for } n \equiv 0 \bmod l .
\end{align*}
$$

That is, solutions of the (TL) hierarchy are independent of x_{n}, y_{n} $(n \equiv 0 \bmod l)$. Let us introduce τ functions, $\tau^{\prime}(s ; x, y)$, by $\tau^{\prime}(s ; x, y)$ $=\exp \left(\sum_{n=1}^{\infty} n x_{n} y_{n}\right) \tau(s ; x, y)$ (cf. [1]). Then we obtain

Proposition 1. Under a suitable choice of elementary multipliers of τ functions (cf. [1], Theorem 4), one finds that the l-periodic condition (8) equivalently reads

$$
\begin{align*}
& \partial_{x_{n}} \tau^{\prime}(s ; x, y)=\partial_{y_{y}} \tau^{\prime}(s ; x, y)=0, \\
& \tau^{\prime}(s ; x, y)=\tau^{\prime}(s+l ; x, y), \quad \text { for any } s, n \equiv 0 \bmod l . \tag{10}
\end{align*}
$$

In order to investigate the linearization scheme for the (TL) hierarchy (cf. [4]), let us recall some basic facts about Lie algebras. Let $\mathfrak{g l}((\infty))$ be the formal Lie algebra of matrices of size $\boldsymbol{Z} \times \boldsymbol{Z}$, and $\mathfrak{g l}((\infty))_{l}$ be a subalgebra of $\mathfrak{g l}((\infty))_{l}$ defined by

$$
\mathfrak{g l}((\infty))_{l}=\left\{A \in \mathfrak{g l}((\infty)) \mid\left[A, \Lambda^{n}\right]=0 \quad \text { for } n \equiv 0 \bmod l\right\}
$$

$\mathfrak{g l}\left(l, C\left[\left[\zeta, \zeta^{-1}\right]\right]\right)$ is isomorphic to $\mathfrak{g l}((\infty))_{l}$ under the correspondence

$$
\begin{align*}
& \operatorname{gr}\left(l, C\left[\left[\zeta, \zeta^{-1}\right]\right]\right) \longrightarrow \operatorname{gr}((\infty))_{l} \tag{11}\\
& A(\zeta)= \sum_{j \in Z} \operatorname{diag}\left[a_{j}(0), \cdots, a_{j}(l-1)\right] \Lambda_{l}(\zeta)^{j} \\
& \longmapsto A=\sum_{j \in Z} \operatorname{diag}\left[a_{j}(0), \cdots, a_{j}(l-1)\right]_{l} \Lambda^{j},
\end{align*}
$$

where

$$
\Lambda_{l}(\zeta)=\left(\begin{array}{llll}
0 & 1 & & \\
& \ddots & \ddots & \\
& \ddots & 1 \\
\zeta & & & 0
\end{array}\right)
$$

and $\operatorname{diag}\left[a_{j}(0), \cdots, a_{j}(l-1)\right]_{l}$ denotes a diagonal matrix $\operatorname{diag}\left(\cdots, a_{j}(0)\right.$, $\left.\cdots, a_{j}(l-1), a_{j}(0), \cdots, a_{j}(l-1), \cdots\right]$. Under this isomorphism, L, M, $W^{(\infty)}(x, y), W^{(0)}(x, y)$ are identified with $L(\zeta), M(\zeta), W^{(\infty)}(x, y ; \zeta)$, $W^{(0)}(x, y ; \zeta) \in \mathfrak{g l}\left(l, C\left[\left[\zeta, \zeta^{-1}\right]\right]\right)$, which take the form

$$
\begin{aligned}
& L(\zeta)=W^{(\infty)}(x, y ; \zeta) \Lambda_{l}(\zeta) W^{(\infty)}(x, y ; \zeta)^{-1} \\
& M(\zeta)=W^{(0)}(x, y ; \zeta) \Lambda_{l}(\zeta)^{-1} W^{(0)}(x, y ; \zeta)^{-1} \\
& W^{(\infty)}(x, y ; \zeta)=\hat{W}^{(\infty)}(x, y ; \zeta) \exp \xi\left(x, \Lambda_{l}(\zeta)\right), \\
& W^{(0)}(x, y ; \zeta)=\hat{W}^{(0)}(x, y ; \zeta) \exp \xi\left(y, \Lambda_{l}(\zeta)^{-1}\right), \\
& \hat{W}^{\left({ }_{\infty}^{0}\right)}(x, y ; \zeta)=\sum_{j=0}^{\infty} \operatorname{diag}\left[\hat{w}_{j}^{(0)}(0 ; x, y), \cdots, \hat{w}_{j}^{(0)}(l-1 ; x, y)\right] \Lambda_{l}(\zeta)^{ \pm j} .
\end{aligned}
$$

Proposition 2. $W^{(0)}(x, y ; \zeta)$ solve the linear equations (12) $\quad \partial_{x_{n}} W(\zeta)=B_{n}(\zeta) W(\zeta), \quad \partial_{y_{n}} W(\zeta)=C_{n}(\zeta) W(\zeta), \quad n=1,2, \cdots$, where $B_{n}(\zeta)=\left[L(\zeta)^{n}\right]_{+}, C_{n}(\zeta)=\left[M(\zeta)^{n}\right]_{-}$. The symbols $[A(\zeta)]_{ \pm}$stand for the part of $A(\zeta)$ of non-negative order, and of strictly negative order with respect to $\Lambda_{l}(\zeta)$, respectively. The compatibility condition for (12) gives the (TL) hierarchy, and $B_{n}(\zeta), C_{n}(\zeta)$ belong to $\mathfrak{\xi l}\left(l, C\left[\zeta, \zeta^{-1}\right]\right)$.
2. The Riemann-Hilbert decomposition and its application. We define $\hat{V}^{\left({ }_{\infty}^{0}\right)}(x, y)$ for wave matrices $W^{\left(\infty_{\infty}^{0}\right)}(x, y)$ by $W^{\left({ }_{\infty}^{0}\right)}(x, y)$ $=\hat{V}^{\binom{0}{\infty}}(x, y) \exp \left(\xi(x, \Lambda)+\xi\left(y, \Lambda^{-1}\right)\right)$. They take the form $\hat{V}^{\binom{0}{\infty}}(x, y)$ $=\sum_{j=0}^{\infty} \operatorname{diag}\left[\hat{v}_{j}^{\left({ }^{0}\right)}(s: x, y)\right] \Lambda^{ \pm j}$, and $\hat{v}_{0}^{(\infty)}(s ; x, y)=1$. Then the bilinear relation (6) implies that there exists an invertible matrix A of size $\boldsymbol{Z} \times \boldsymbol{Z}$ such that
(13)

$$
\hat{V}^{(0)}(x, y)=\hat{V}^{(\infty)}(x, y) H(x, y)
$$

where $H(x, y)=\exp \left(\xi(x, \Lambda)+\xi\left(y, \Lambda^{-1}\right)\right) A \exp \left(\xi(-x, \Lambda)+\xi\left(-y, \Lambda^{-1}\right)\right)$. This implies decomposition of $H(x, y)$ to the upper triangular matrix $\hat{V}^{(0)}$ and the lower triangular matrix $\hat{V}^{(\infty)}$, and is regarded as an infinite dimensional generalization of the classical Riemann-Hilbert (RH) problem. In fact, if $A \in \mathfrak{g l}((\infty))_{l}$ then (13) reduces to the classical RH problem. Therefore (13) will be called the RH decomposition.

Proposition 3. Let $A=I+\sum_{j=1}^{N} a_{j} X_{p_{j} q_{j}}$ in (13), where

$$
X_{p q}=\sum_{m, n \in \mathbf{Z}} p^{m} q^{-n} E_{m n}\left(E_{m n}=\left(\delta_{m i} \delta_{n j}\right)_{i, j \in \boldsymbol{Z}}\right)
$$

is the so-called vertex operator [3]. Suppose $a_{j}>0$, and $0<q_{N}<\cdots$ $<q_{1}<p_{1}<\cdots<p_{N}$. Then the $R H$ decomposition has a unique pair of solutions $\hat{V}^{\binom{0}{\infty}}(x, y)$, and their entries are expressed in the form

$$
\begin{aligned}
& \hat{v}_{j}^{(\infty)}(s ; x, y)=p_{j}\left(-\tilde{\partial}_{x}\right) \tau^{\prime}(s ; x, y) / \tau^{\prime}(s ; x, y), \\
& \hat{v}_{j}^{(0)}(s ; x, y)=p_{j}\left(-\tilde{\partial}_{y}\right) \tau^{\prime}(s+1 ; x, y) / \tau^{\prime}(s ; x, y) .
\end{aligned}
$$

Here the τ functions, $\tau^{\prime}(s ; x, y)$, is given by

$$
\begin{equation*}
\tau^{\prime}(s ; x, y)=\sum_{l=0}^{N} \sum_{i_{1}<\cdots<i_{l}} c_{i_{1} \cdots i_{l}} a_{i_{1}}(s) \cdots a_{i_{l}}(s) \exp \left(\sum_{\mu=1}^{l} \eta\left(p_{i_{\mu}}\right)-\eta^{\prime}\left(q_{i_{\mu}}\right)\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i}(s)=a_{i}\left(p_{i} / q_{i}\right)^{s} q_{i} /\left(p_{i}-q_{i}\right), \\
& c_{i_{1} \cdots i_{l}}=\sum_{1 \leq \mu<\nu \leq i} c_{i_{\mu} i \nu}, \quad c_{i j}=\left(p_{i}-p_{j}\right)\left(q_{i}-q_{j}\right) /\left(p_{i}-q_{j}\right)\left(q_{i}-p_{j}\right), \\
& \eta(p)=\xi(x, p)+\xi\left(y, p^{-1}\right) .
\end{aligned}
$$

The τ function (14) coincides with the τ function introduced in [5], [6].
3. Remarks. (1) Setting $A=I+\sum_{j=1}^{r} a_{j} E_{m_{j n_{j}}}$ and $y=0$ in (13), one can obtain rational solutions of the KP hierarchy (cf. Theorem 5 in [1]).
(2) The TL hierarchies of orthogonal or symplectic type, and the multi-component TL hierarchy can be also considered.

These topics are investigated in detail in [2].
Acknowledgement. The authors would like to thank Profs. Mikio Sato and Masaki Kashiwara for stimulating discussions. One of the authors (K. T.) thanks Prof. Hikosaburo Komatsu for hearty cares.

References

[1] K. Ueno and K. Takasaki: Toda lattice hierarchy I. RIMS preprint (1983).
[2] -: Toda lattice hierarchy. RIMS preprint (1983) (to appear in Advanced Study in Pure. Math.).
[3] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa: Transformation groups for soliton equations II. Proc. Japan Acad., 57A, 387-392 (1981) ; ditto. III. J. Phys. Soc. Japan, 40, 3806-3812 (1981).
[4] A. V. Mikhailov, M. A. Olshanetsky, and A. M. Perelomov: Two-dimensional generalized Toda lattice. Commun. Math. Phys., 79, 473-488 (1981).
[5] R. Hirota: Discrete analogue of the generalized Toda equation. J. Phys. Soc. Japan, 50, 3875 (1981) ; Tech. Rep., A-6, A-9, Hiroshima Univ. (1981).
[6] T. Miwa: On Hirota's difference equation. Proc. Japan Acad., 58A, 8-11 (1982).

[^0]: *) Department of Mathematics, Yokohama City University, 22-2 Seto, Yokohama 236.
 **) Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, Tokyo 113.

