By Hiroshi Ito

Department of Mathematics, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1983)

Let K be an imaginary quadratic field embedded in the complex number field C, and let $f \neq (1)$ be an integral ideal of K. For each element C of the ray class group $Cl(\mathfrak{f})$ modulo \mathfrak{f} the ray class invariant $\phi_{\rm f}(C)$ is introduced by Siegel and Ramachandra (cf. Robert [5] and Stark [7]). The definition will be explained in the text. Let H(f) be the ray class field modulo f and f the smallest positive integer contained in f. Then it is known that $(\phi_i(C)/\phi_i(C'))^{e(H(\mathfrak{f}))/e(K)}$ $(C, C' \in \mathcal{Cl}(\mathfrak{f}))$ is the (12f)-th power of a unit of $H(\mathfrak{f})$ (Gillard and Robert [1]). Here $e(H(\mathfrak{f}))$ and e(K) are the numbers of roots of unity contained in $H(\mathfrak{f})$ and K respectively. In this paper we describe a (12f)-th root of $(\phi_{\mathfrak{f}}(C)/\phi_{\mathfrak{f}}(C'))^{e(H(\mathfrak{f}))/e(K)}$ contained in $H(\mathfrak{f})$ explicitly by special values of the Siegel functions and determine the behavior under Artin auto-The result is then useful to calculate class numbers of morphisms. abelian extensions of K by the method of Gras and Gras [2].

§ 1. Preliminaries. Let $f \neq (1)$ be an integral ideal of K. The ideal f is uniquely decomposed into two factors f_a , f_b as follows:

$$f = f_a f_b, \quad f_a = \overline{f}_a, \quad (\overline{f}_b, \overline{f}_b) = 1.$$

Here the bar indicates the complex conjugation. Take an integral basis $\{\omega, 1\}$ (Im $(\omega) > 0$) of the ring \circ of integers of K. We fix such an ω throughout this paper. The next lemma is fundamental in the formulation and the proof of our results.

Lemma. Let f_b be the smallest positive integer contained in f_b . Then there exists a rational integer a satisfying the following condition: For an arbitrary element x of f_b the congruence

$$a \operatorname{tr} (x) \equiv \operatorname{Im} (x) / \operatorname{Im} (\omega) \mod f_b$$

holds, where $tr(\cdot)$ is the trace map from K to the rational number field Q.

We fix such an integer a. For an algebraic number field H of finite degree denote by e(H) the number of roots of unity contained in H. Put $\delta = e(H(1))/e(K)$, where H(1) is the Hilbert class field of K. The integer δ is a divisor of 6. We consider the following condition (#) concerning an ideal (not necessarily integral) α of K:

(#) a is prime to 6f and $N(a) \equiv 1 \mod (12/\delta)$.

Here N(a) is the absolute norm of a and the congruence is considered

multiplicatively. Every absolute ideal class of K contains infinitely many prime ideals of degree one satisfying the condition (#). Let t and z be complex numbers with Im(z)>0, and put $e(t)=\exp(2\pi i t)$. Define the Siegel function g(t, z) by

$$g(t,z) = 2e\left(\frac{z}{12} + \frac{t \operatorname{Im}(t)}{2 \operatorname{Im}(z)}\right) \sin(\pi t) \prod_{m=1}^{\infty} (1 - 2\cos(2\pi t)e(mz) + e(2mz)).$$

Cf. [5] and [7].

For an ideal a of K satisfying (#), take an integral basis $\{\mu, \nu\}$ $(\text{Im } (\mu/\nu) > 0)$ of a and put

 $s_{\mathfrak{f}}(t,\mathfrak{a}) = [e(a|t|^2/N(\mathfrak{a}))\lambda(A)g(t/\nu,\mu/\nu)]^{e(H(\mathfrak{f}))/e(K)}.$

Here $\lambda(A)$ is a 12-th root of unity defined as follows. Take another integral ideal c with (#) contained in a, and let $\{\rho, \tau\}$ (Im $(\rho/\tau) > 0$) be an integral basis of c. Define 2×2 matrices B_1 and B_2 by

$$\begin{pmatrix} \rho \\ \tau \end{pmatrix} = B_1 \begin{pmatrix} \omega \\ 1 \end{pmatrix} = B_2 \begin{pmatrix} \mu \\ \nu \end{pmatrix},$$

and choose integral matrices A_1 and A_2 so that

 $\det(A_i) = 1, A_i \equiv B_i \mod (12/\delta) (i=1, 2).$

Put $A = A_1^{-1}A_2 = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$ and let $\lambda(A)$ be the 12-th root of unity appearing in the transformation formula of the Dadekind eta-function :

ing in the transformation formula of the Dedekind eta-function:

 $\eta^2(Az) = \lambda(A)(cz+d)\eta^2(z).$

By the transformation property of g(t, z) under the modular group (cf. [7]) and by the fact that δ divides $e(H(\bar{f}))/e(K)$, we see that the above definition is well-defined. The symbol $s_{f}(t, \alpha)$ depends on the choice of the integer a and the integral basis $\{\omega, 1\}$, but we do not indicate them for simplicity.

§ 2. Main results. Denote by $A(\mathfrak{f})$ the set of pairs (t, α) of $t \in K^{\times}$ and an ideal α of K satisfying (\sharp) such that $t^{-1}\alpha \cap \mathfrak{o} = \mathfrak{f}$. Every element (t, α) of $A(\mathfrak{f})$ gives an integral ideal $t\alpha^{-1}\mathfrak{f}$ prime to \mathfrak{f} , whose class in $Cl(\mathfrak{f})$ is denoted by $C(t, \alpha)$. By the fact mentioned after the condition (\sharp) , the map $A(\mathfrak{f}) \ni (t, \alpha) \mapsto C(t, \alpha) \in Cl(\mathfrak{f})$ is surjective. Take an element \mathfrak{i} of K^{\times} and an integral ideal \mathfrak{g} satisfying (\sharp) so that $\mathfrak{f} = \mathfrak{i}\mathfrak{g}^{-1}$. Every element C of $Cl(\mathfrak{f})$ is represented by an integral ideal of the form $\alpha\mathfrak{b}^{-1}$, where \mathfrak{b} is an integral ideal satisfying (\sharp) and $\alpha \in \mathfrak{b}$, and is written as $C = C(\alpha/\mathfrak{i}, \mathfrak{b}/\mathfrak{g})$. Let $\{\mu, \nu\}$ (Im $(\mu/\nu) > 0$) be a basis of $\mathfrak{b}/\mathfrak{g}$. Then the Siegel-Ramachandra class invariant $\phi_{\mathfrak{f}}(C)$ is defined by

$$\phi_{\mathrm{f}}(C) = g(\alpha/\gamma\nu, \, \mu/\nu)^{12f}.$$

Theorem. Let $f \neq (1)$ be an integral ideal of K prime to 6, and express $f = 7g^{-1}$ as above. Let $(\alpha/7, b/g)$ and $(\alpha'/7, b'/g)$ be two elements of A(f) with integral ideals b and b'. Assume $\alpha \equiv \alpha' \mod 2$. Then we have:

(0) $s_{\mathfrak{f}}(\alpha/\mathfrak{l}, \mathfrak{b}/\mathfrak{g})^{12f} = \phi_{\mathfrak{f}}(C)^{e(H(\mathfrak{f}))/e(K)}, \text{ where } C = C(\alpha/\mathfrak{l}, \mathfrak{b}/\mathfrak{g}).$

No. 5]

(i) $s_{\mathfrak{f}}(\alpha/\mathfrak{l},\mathfrak{b}/\mathfrak{g})$ is an algebraic integer of the ray class field modulo 12 \mathfrak{f} .

(ii) $s_{\mathfrak{f}}(\alpha/\mathfrak{r}, \mathfrak{b}/\mathfrak{g})/s_{\mathfrak{f}}(\alpha'/\mathfrak{r}, \mathfrak{b}'/\mathfrak{g})$ is a unit of $H(\mathfrak{f})$.

(iii) For an arbitrary ideal \mathfrak{b}_0 satisfying (\sharp) and $\alpha_0 \in \mathfrak{b}_0$, we have $[s_i(\alpha/\gamma, \mathfrak{b}/\mathfrak{g})/s_i(\alpha'/\gamma, \mathfrak{b}'/\mathfrak{g})]^{(\alpha_0\mathfrak{b}_0^{-1}, H(\mathfrak{f})/K)}$

 $= s_{\mathfrak{f}}(\alpha \alpha_0/\gamma, \mathfrak{bb}_0/\mathfrak{g})/s_{\mathfrak{f}}(\alpha' \alpha_0/\gamma, \mathfrak{b}'\mathfrak{b}_0/\mathfrak{g})$

if $\alpha_0 b_0^{-1}$ is prime to \mathfrak{f} . Here $(\cdot, H(\mathfrak{f})/K)$ is the Artin symbol for $H(\mathfrak{f})$.

Remark. When b = b', the assertions (ii) and (iii) are valid whithout the assumption (f, 6) = 1.

§3. Index-class number formula. Suppose $(\mathfrak{f}, 6)=1$ and let C_1, \dots, C_h be elements of $\mathcal{C}l(\mathfrak{f})$. Write $C_i = C(\alpha_i/\mathfrak{f}, \mathfrak{b}_i/\mathfrak{g})$ $(i=1, \dots, h)$ as explained in §2. We assume that all α_i 's $(i=1, \dots, h)$ are congruent to each other modulo 2. Then by the theorem, we see that

 $s_{\mathfrak{f}}(\alpha_i/\gamma, \mathfrak{b}_i/\mathfrak{g})/s_{\mathfrak{f}}(\alpha_1/\gamma, \mathfrak{b}_1/\mathfrak{g})$ $(i=2, \cdots, h)$

generate a subgroup S of the unit group of $H(\mathfrak{f})$. Let H be an abelian extension of K whose conductor is \mathfrak{f} . We define a subgroup S(H) of the unit group E(H) of H by

$$\mathbf{S}(H) = \mu(H) \times N_{H(\mathfrak{f})/H}(S),$$

where $\mu(H)$ is the torsion part of E(H) and $N_{H(\mathfrak{f})/H}(\cdot)$ is the norm map from $H(\mathfrak{f})$ to H. By the analytic class number formula, we obtain the following proposition.

Proposition. (i) Let \mathfrak{p} be a prime ideal of K such that $\overline{\mathfrak{p}} \neq \mathfrak{p}$ and $\mathfrak{p} \neq \mathfrak{b}$. Suppose that $\mathfrak{f} = \mathfrak{p}^n$ (n > 0) and $H \cap H(1) = K$. Then we have $(E(H) : S(H)) = \delta^{[H:K]-1}h_H/h_K$,

where h_{H} and h_{K} are the class numbers of H and K respectively, and $\delta = e(H(1))/e(K)$.

(ii) If [H:K] is a prime number p,

 $(E(H): S(H)) = (f_a \delta)^{p-1} (e(K)/e(H)) h_H/h_K,$

where f_a is the smallest positive integer in f_a .

Remark. We can obtain more general formulas following Nakamula [4] or Schertz [6].

Example. Let $K=Q(\sqrt{-19})$, $\mathfrak{p}=(7)$ $(7=\omega+1, \omega=(1+\sqrt{-19})/2)$, and let H be the ray class field modulo \mathfrak{p} . The ideal \mathfrak{p} is a prime ideal over 7. The field H is a cubic cyclic extension of K, the Galois group G of which is generated by $\sigma=((3), H/K)$. Note that H is not Galois over Q and that our result is conveniently applied in this type of situation. In the present case, we have

 $(E(H):S(H)) = h_{H}, \qquad S(H) = \{\pm 1\} \times \epsilon^{\mathbb{Z}[G]}.$ Here the unit ϵ and its conjugates over K are as follows:

$$\begin{split} & \varepsilon = s_{\mathfrak{p}}(3/\tilde{\tau}, \mathfrak{o})/s_{\mathfrak{p}}(1/\tilde{\tau}, \mathfrak{o}), \\ & \varepsilon' = s_{\mathfrak{p}}(9/\tilde{\tau}, \mathfrak{o})/s_{\mathfrak{p}}(3/\tilde{\tau}, \mathfrak{o}), \\ & \varepsilon''^{2} = s_{\mathfrak{p}}(27/\tilde{\tau}, \mathfrak{o})/s_{\mathfrak{p}}(9/\tilde{\tau}, \mathfrak{o}). \end{split}$$

If we take the integer a in the definition of s_{ν} to be -2, the minimal polynomial of ε over K is $X^{3}-2X^{2}+\omega X+1$. To determine this, we used the approximations

 $\varepsilon \sim 2.11673140 - i1.06052873$,

 $\varepsilon^{\sigma} \sim 0.30333461 + i0.70624358$,

 $\varepsilon^{\sigma^2} \sim -0.42006601 + i0.35428514.$

After some considerations following Gras and Gras [2] (see also [4]), we conclude that E(H) = S(H) and $h_H = 1$ in this case.

References

- [1] R. Gillard and G. Robert: Groupes d'unités elliptiques. Bull. Soc. Math. France, 107, 305-317 (1979).
- [2] G. Gras and M.-N. Gras: Calcul du nombre de classes et unités des extensions abéliennes réelles de Q. ibid., 2° série, 101, 97-129 (1977).
- [3] H. Ito: On the Siegel-Ramachandra ray class invariant over imaginary quadratic fields. Master Thesis, Nagoya Univ. (1983).
- [4] K. Nakamula: On elliptic units and a class number decomposition. Kokyuroku RIMS, Kyoto Univ., no. 440, pp. 168-178 (1981).
- [5] G. Robert: Unités elliptiques. Bull. Soc. Math. France, Mémoire, 36 (1973).
- [6] R. Schertz: Die Klassenzahl der Teilkörper abelscher Erweitelungen imaginärquadratischer Zahlkörper, I. J. reine angew. Math., 295, 151–168 (1977).
- [7] H. M. Stark: L-functions at s=1, IV. Advances in Math., 35, 197-235 (1980).