61. A Result on the Siegel-Ramachandra Class Invariant over Imaginary Quadratic Fields

By Hiroshi Ito
Department of Mathematics, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1983)

Let K be an imaginary quadratic field embedded in the complex number field C, and let $\mathfrak{f} \neq(1)$ be an integral ideal of K. For each element C of the ray class group $\mathcal{C l}(f)$ modulo f the ray class invariant $\phi_{\mathrm{f}}(C)$ is introduced by Siegel and Ramachandra (cf. Robert [5] and Stark [7]). The definition will be explained in the text. Let $H(f)$ be the ray class field modulo f and f the smallest positive integer contained in \mathfrak{f}. Then it is known that $\left(\phi_{\mathrm{f}}(C) / \phi_{\mathrm{f}}\left(C^{\prime}\right)\right)^{e(H(f)) / e(K)}\left(C, C^{\prime} \in \mathcal{C l}(\mathrm{f})\right)$ is the (12f)-th power of a unit of $H(\uparrow)$ (Gillard and Robert [1]). Here $e(H(\uparrow))$ and $e(K)$ are the numbers of roots of unity contained in $H(\uparrow)$ and K respectively. In this paper we describe a (12f)-th root of $\left(\phi_{\mathrm{f}}(C) / \phi_{\mathrm{f}}\left(C^{\prime}\right)\right)^{e(H(f)) / e(K)}$ contained in $H(\mathrm{f})$ explicitly by special values of the Siegel functions and determine the behavior under Artin automorphisms. The result is then useful to calculate class numbers of abelian extensions of K by the method of Gras and Gras [2].
§ 1. Preliminaries. Let $\mathfrak{f} \neq(1)$ be an integral ideal of K. The ideal \mathfrak{f} is uniquely decomposed into two factors $\mathfrak{f}_{a}, \mathfrak{f}_{b}$ as follows:

$$
\mathfrak{f}=\hat{\mathrm{f}}_{a} \mathfrak{f}_{b}, \quad \mathfrak{f}_{a}=\overline{\mathfrak{f}}_{a}, \quad\left(\mathfrak{f}_{b}, \overline{\mathfrak{F}}_{b}\right)=1 .
$$

Here the bar indicates the complex conjugation. Take an integral basis $\{\omega, 1\}(\operatorname{Im}(\omega)>0)$ of the ring \mathfrak{o} of integers of K. We fix such an ω throughout this paper. The next lemma is fundamental in the formulation and the proof of our results.

Lemma. Let f_{b} be the smallest positive integer contained in f_{b}. Then there exists a rational integer a satisfying the following condition: For an arbitrary element x of f_{b} the congruence

$$
a \operatorname{tr}(x) \equiv \operatorname{Im}(x) / \operatorname{Im}(\omega) \quad \bmod f_{b}
$$

holds, where $\operatorname{tr}(\cdot)$ is the trace map from K to the rational number field \boldsymbol{Q}.

We fix such an integer a. For an algebraic number field H of finite degree denote by $e(H)$ the number of roots of unity contained in H. Put $\delta=e(H(1)) / e(K)$, where $H(1)$ is the Hilbert class field of K. The integer δ is a divisor of 6 . We consider the following condition (\#) concerning an ideal (not necessarily integral) \mathfrak{a} of K :
(\#) \mathfrak{a} is prime to $6 f$ and $N(\mathfrak{a}) \equiv 1 \bmod (12 / \delta)$.
Here $N(\mathfrak{a})$ is the absolute norm of \mathfrak{a} and the congruence is considered
multiplicatively. Every absolute ideal class of K contains infinitely many prime ideals of degree one satisfying the condition (\#). Let t and z be complex numbers with $\operatorname{Im}(z)>0$, and put $e(t)=\exp (2 \pi i t)$. Define the Siegel function $g(t, z)$ by

$$
g(t, z)=2 e\left(\frac{z}{12}+\frac{t \operatorname{Im}(t)}{2 \operatorname{Im}(z)}\right) \sin (\pi t) \prod_{m=1}^{\infty}(1-2 \cos (2 \pi t) e(m z)+e(2 m z))
$$

Cf. [5] and [7].
For an ideal \mathfrak{a} of K satisfying (\#), take an integral basis $\{\mu, \nu\}$ $(\operatorname{Im}(\mu / \nu)>0)$ of \mathfrak{a} and put

$$
s_{\mathrm{f}}(t, \mathfrak{a})=\left[\mathrm{e}\left(a|t|^{2} / N(\mathfrak{a})\right) \lambda(A) g(t / \nu, \mu / \nu)\right]^{e(H(\mathrm{f})) / e(K)}
$$

Here $\lambda(A)$ is a 12 -th root of unity defined as follows. Take another integral ideal \mathfrak{c} with ($\#$) contained in \mathfrak{a}, and let $\{\rho, \tau\}(\operatorname{Im}(\rho / \tau)>0)$ be an integral basis of c. Define 2×2 matrices B_{1} and B_{2} by

$$
\binom{\rho}{\tau}=B_{1}\binom{\omega}{1}=B_{2}\binom{\mu}{\nu},
$$

and choose integral matrices A_{1} and A_{2} so that

$$
\operatorname{det}\left(A_{i}\right)=1, \quad A_{i} \equiv B_{i} \bmod (12 / \delta) \quad(i=1,2)
$$

Put $A=A_{1}^{-1} A_{2}=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right)$ and let $\lambda(A)$ be the 12-th root of unity appearing in the transformation formula of the Dedekind eta-function:

$$
\eta^{2}(A z)=\lambda(A)(c z+d) \eta^{2}(z) .
$$

By the transformation property of $g(t, z)$ under the modular group (cf. [7]) and by the fact that δ divides $e(H(f)) / e(K)$, we see that the above definition is well-defined. The symbol $s_{\mathrm{f}}(t, \mathfrak{a})$ depends on the choice of the integer a and the integral basis $\{\omega, 1\}$, but we do not indicate them for simplicity.
§ 2. Main results. Denote by $A(\uparrow)$ the set of pairs (t, \mathfrak{a}) of $t \in K^{\times}$ and an ideal \mathfrak{a} of K satisfying (\#) such that $t^{-1} \mathfrak{a} \cap \mathfrak{o}=\mathfrak{f}$. Every element (t, \mathfrak{a}) of $A(\mathfrak{f})$ gives an integral ideal $t \mathfrak{a}^{-1} \mathfrak{f}$ prime to \mathfrak{f}, whose class in $\mathcal{C l}(\mathfrak{f})$ is denoted by $C(t, \mathfrak{a})$. By the fact mentioned after the condition (\#), the $\operatorname{map} A(\mathfrak{f}) \ni(t, \mathfrak{a}) \mapsto C(t, \mathfrak{a}) \in \mathcal{C l}(\mathfrak{f})$ is surjective. Take an element γ of K^{\times}and an integral ideal g satisfying ($\#$) so that $\mathfrak{f}=\gamma g^{-1}$. Every element C of $\mathcal{C l}(f)$ is represented by an integral ideal of the form $\alpha 6^{-1}$, where \mathfrak{b} is an integral ideal satisfying (\#) and $\alpha \in \mathfrak{b}$, and is written as $C=C(\alpha / \gamma, \mathfrak{b} / \mathfrak{g})$. Let $\{\mu, \nu\}(\operatorname{Im}(\mu / \nu)>0)$ be a basis of $\mathfrak{b} / \mathfrak{g}$. Then the Siegel-Ramachandra class invariant $\phi_{\mathrm{r}}(C)$ is defined by

$$
\phi_{\mathrm{f}}(C)=g(\alpha / \gamma \nu, \mu / \nu)^{12 f} .
$$

Theorem. Let $\mathfrak{f} \neq(1)$ be an integral ideal of K prime to 6 , and express $\mathfrak{f}=\gamma^{-1}{ }^{-1}$ as above. Let $(\alpha / \gamma, \mathfrak{b} / \mathfrak{g})$ and $\left(\alpha^{\prime} / \gamma, \mathfrak{b}^{\prime} / \mathfrak{g}\right)$ be two elements of $A(\mathfrak{f})$ with integral ideals \mathfrak{b} and \mathfrak{b}^{\prime}. Assume $\alpha \equiv \alpha^{\prime} \bmod 2$. Then we have:
(0) $\quad s_{\mathrm{f}}(\alpha / \gamma, \mathfrak{b} / \mathfrak{g})^{12 f}=\phi_{\mathrm{f}}(C)^{e(H(f)) / e(K)}$, where $C=C(\alpha / \gamma, \mathfrak{b} / \mathfrak{g})$.
(i) $s_{\mathfrak{f}}(\alpha / \gamma, \mathfrak{b} / \mathfrak{g})$ is an algebraic integer of the ray class field modulo 12†.
(ii) $s_{f}(\alpha / \gamma, \mathfrak{b} / \mathfrak{g}) / s_{f}\left(\alpha^{\prime} / \gamma, \mathfrak{b}^{\prime} / \mathfrak{g}\right)$ is a unit of $H(\mathfrak{f})$.
(iii) For an arbitrary ideal \mathfrak{b}_{0} satisfying (\#) and $\alpha_{0} \in \mathfrak{b}_{0}$, we have

$$
\begin{aligned}
& {\left[s_{\mathfrak{f}}(\alpha / \gamma, \mathfrak{b} / \mathfrak{g}) / s_{\mathfrak{f}}\left(\alpha^{\prime} / \gamma, \mathfrak{b}^{\prime} / \mathfrak{g}\right)\right]^{\left(\alpha \mathfrak{o b}_{0}^{-1}, H(\mathfrak{f}) / K\right)}} \\
& \quad=s_{\mathrm{f}}\left(\alpha \alpha_{0} / \gamma, \mathfrak{b b}_{0} / \mathfrak{g}\right) / s_{\mathfrak{f}}\left(\alpha^{\prime} \alpha_{0} / \gamma, \mathfrak{b}^{\prime} \mathfrak{b}_{0} / \mathfrak{g}\right)
\end{aligned}
$$

if $\alpha_{0} \mathfrak{b}_{0}^{-1}$ is prime to \mathfrak{f}. Here $(\cdot, H(\mathfrak{f}) / K)$ is the Artin symbol for $H(\mathfrak{f})$.
Remark. When $\mathfrak{b}=\mathfrak{b}^{\prime}$, the assertions (ii) and (iii) are valid whithout the assumption $(\mathfrak{f}, 6)=1$.
§3. Index-class number formula. Suppose $(\mathfrak{f}, 6)=1$ and let C_{1}, \cdots, C_{h} be elements of $\mathcal{C l}(\mathrm{f})$. Write $C_{i}=C\left(\alpha_{i} / \gamma, \mathfrak{b}_{i} / \mathfrak{g}\right)(i=1, \cdots, h)$ as explained in §2. We assume that all α_{i} 's $(i=1, \cdots, h)$ are congruent to each other modulo 2. Then by the theorem, we see that

$$
s_{\mathrm{f}}\left(\alpha_{i} / \gamma, \mathfrak{b}_{i} / \mathfrak{g}\right) / s_{\mathrm{f}}\left(\alpha_{1} / \gamma, \mathfrak{b}_{1} / \mathfrak{g}\right) \quad(i=2, \cdots, h)
$$

generate a subgroup S of the unit group of $H(\mp)$. Let H be an abelian extension of K whose conductor is \mathfrak{f}. We define a subgroup $S(H)$ of the unit group $E(H)$ of H by

$$
S(H)=\mu(H) \times N_{H(\mathrm{p}) / H}(S)
$$

where $\mu(H)$ is the torsion part of $E(H)$ and $N_{H(\mathrm{p}) / H}(\cdot)$ is the norm map from $H(\uparrow)$ to H. By the analytic class number formula, we obtain the following proposition.

Proposition. (i) Let \mathfrak{p} be a prime ideal of K such that $\bar{p} \neq \mathfrak{p}$ and $\mathfrak{p} \not 6$. Suppose that $\mathfrak{f}=\mathfrak{p}^{n}(n>0)$ and $H \cap H(1)=K$. Then we have

$$
(E(H): S(H))=\delta^{[H: K]-1} h_{H} / h_{K},
$$

where h_{H} and h_{K} are the class numbers of H and K respectively, and $\delta=e(H(1)) / e(K)$.
(ii) If $[H: K]$ is a prime number p,

$$
(E(H): S(H))=\left(f_{a} \delta\right)^{p-1}(e(K) / e(H)) h_{H} / h_{K},
$$

where f_{a} is the smallest positive integer in \dot{f}_{a}.
Remark. We can obtain more general formulas following Nakamula [4] or Schertz [6].

Example. Let $K=\boldsymbol{Q}(\sqrt{-19}), \mathfrak{p}=(\gamma)(\gamma=\omega+1, \omega=(1+\sqrt{-19}) / 2)$, and let H be the ray class field modulo \mathfrak{p}. The ideal \mathfrak{p} is a prime ideal over 7. The field H is a cubic cyclic extension of K, the Galois group G of which is generated by $\sigma=((3), H / K)$. Note that H is not Galois over \boldsymbol{Q} and that our result is conveniently applied in this type of situation. In the present case, we have

$$
(E(H): S(H))=h_{H}, \quad S(H)=\{ \pm 1\} \times \varepsilon^{Z[\sigma]} .
$$

Here the unit ε and its conjugates over K are as follows:

$$
\begin{aligned}
\varepsilon & =s_{\mathfrak{p}}(3 / \gamma, \mathfrak{p}) / s_{p}(1 / \gamma, \mathfrak{o}), \\
\varepsilon^{\sigma} & =s_{\mathfrak{p}}(9 / \gamma, \mathfrak{o}) / s_{\mathfrak{p}}(3 / \gamma, \mathfrak{o}), \\
\varepsilon^{2} & =s_{p}(27 / \gamma, \mathfrak{o}) / s_{\mathfrak{p}}(9 / \gamma, \mathfrak{o}) .
\end{aligned}
$$

If we take the integer a in the definition of $s_{\mathfrak{p}}$ to be -2 , the minimal polynomial of ε over K is $X^{3}-2 X^{2}+\omega X+1$. To determine this, we used the approximations

$$
\begin{gathered}
\varepsilon \sim 2.11673140-i 1.06052873 \\
\varepsilon^{\sigma} \sim 0.30333461+i 0.70624358 \\
\varepsilon^{\sigma^{2}} \sim-0.42006601+i 0.35428514
\end{gathered}
$$

After some considerations following Gras and Gras [2] (see also [4]), we conclude that $E(H)=S(H)$ and $h_{H}=1$ in this case.

References

[1] R. Gillard and G. Robert: Groupes d'unités elliptiques. Bull. Soc. Math. France, 107, 305-317 (1979).
[2] G. Gras and M.-N. Gras: Calcul du nombre de classes et unités des extensions abéliennes réelles de Q. ibid., 2^{e} série, 101, 97-129 (1977).
[3] H. Ito: On the Siegel-Ramachandra ray class invariant over imaginary quadratic fields. Master Thesis, Nagoya Univ. (1983).
[4] K. Nakamula: On elliptic units and a class number decomposition. Kokyuroku RIMS, Kyoto Univ., no. 440, pp. 168-178 (1981).
[5] G. Robert: Unités elliptiques. Bull. Soc. Math. France, Mémoire, 36 (1973).
[6] R. Schertz: Die Klassenzahl der Teilkörper abelscher Erweitelungen imaginärquadratischer Zahlkörper, I. J. reine angew. Math., 295, 151-168 (1977).
[7] H. M. Stark: L-functions at $s=1$, IV. Advances in Math., 35, 197-235 (1980).

