59. On an Anderson-Anderson Problem

By Ryûki MATSUDA

Department of Mathematics, Faculty of Science, Ibaraki University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1983)

§ 1. Introduction. Let R be a commutative integral domain with quotient field K. For nonzero fractional ideals I and J, we define $I: J = \{x \in R; xJ \subset I\}$. We will denote $\{x \in K; xI \subset R\}$ by I^{-1} , and $(I^{-1})^{-1}$ by I_v . We will say that I is a divisorial ideal or v-ideal if $I=I_v$. I is a v-ideal of finite type if $I=J_v$ for some finitely generated fractional ideal J. By a graded domain $R = \bigoplus_{a \in \Gamma} R_a$, we mean an integral domain R graded by an arbitrary torsionless grading monoid Γ , i.e., a commutative cancellative monoid, written additively, such that the quotient group $\langle \Gamma \rangle$ generated by Γ is a torsion-free abelian group. (A general reference on torsionless grading monoids and Γ -graded rings For a fractional ideal I of a Γ -graded integral domain is [5].) $R = \bigoplus_{\alpha \in I} R_{\alpha}$, I^* will denote the fractional ideal generated by the homogeneous elements of *I*. Let $x \in R$, with $x = x_1 + x_2 + \cdots + x_n$, where x_i $\in R_{\alpha_i}$ and $\alpha_i \neq \alpha_j$ for $i \neq j$. We then define the content of x, denoted by C(x), to be (x_1, x_2, \dots, x_n) . One of the most important examples of a Γ -graded integral domain is the semigroup ring $R[X; \Gamma]$. Here $R[X;\Gamma]=R[\{X^{g}; g\in\Gamma\}]$ with $X^{g}X^{h}=X^{g+h}$. $R[X;\Gamma]$ is Γ -graded in the natural way with deg $(X^{o}) = g$. In [1], D. D. Anderson-D. F. And erson studied v-ideals and invertible ideals of a Γ -graded domain Specifically in §3 they gave necessary and sufficient conditions R. for an integral v-ideal of R to be homogeneous whenever it contains a nonzero homogeneous element, proving the following result.

Theorem ([1], Theorem 3.2). Let $R = \bigoplus_{a \in \Gamma} R_a$ be a graded integral domain and suppose $S = \{nonzero \ homogeneous \ elements \ of \ R\} \neq \phi$. The following statements are equivalent.

(1) For $r \in S$ and $x \in R$, (r) : (x) is homogeneous.

(2) If I is an integral v-ideal of R with nonzero I^* , then I is homogeneous.

(3) If I is an integral v-ideal of R of finite type with nonzero I^* , then I is homogeneous.

(4) $C(xy)_v = (C(x)C(y))_v$ for all nonzero $x, y \in R$.

(5) For each nonzero $x \in R$, $xR_s \cap R = xC(x)^{-1}$.

(6) If I is an integral v-ideal of R of finite type, then I=qJ for some $q \in R_s$ and some homogeneous integral v-ideal J of R of finite type.

R. MATSUDA

They asked in [1] if in (6) it is necessary to assume that I is of finite type. In this paper we show that this is actually necessary for an infinite number of graded integral domains which we should construct.

Let A be a commutative ring, and let Γ be a commutative cancellative monoid. In Appendix we give a necessary and sufficient condition for semigroup ring $A[X;\Gamma]$ to be a Noetherian ring.

§ 2. Examples. Let *D* be a domain of characteristic p>0, and let Γ be an additive subgroup of the real numbers *R* containing $\{1/p, 1/(p^2), 1/(p^3), \cdots\}$. We denote the group ring $D[X; \Gamma]$ by *R* throughout the section.

Lemma 1. Let $\{d(1), d(2), d(3), \cdots\}$ and $\{n(1), n(2), n(3), \cdots\}$ be two sequences of natural numbers (≥ 1) . Set $f_n = \prod_{i=1}^n (1 - X^{n(i)/p^{d(i)}})$ for each natural number n. Suppose that (1) $d(1) < d(2) < d(3) < \cdots$, and (2) n(i) < p for each natural number i. Then the ideal $\bigcap_{i=1}^{\infty} (f_i)$ of R is not zero.

Proof. Let k and l be natural numbers such that k < l. We set e = (p-1)! and set

$$e(k, l) = p^{d(l) - d(l)} + p^{d(l) - d(l-1)} + \cdots + p^{d(l) - d(k)}$$

Then we have

 $(*) e(k, l) \le (p^{d(l)-d(k)+1}-1)/(p-1).$ Since $1-X^{e/p^{d(l)}} = (1-X^{e/p^{d(l)}})^{p^{d(l)-d(l)}}$, we have

 $\prod_{i=k}^{l} (1 - X^{e/p^{d(l)}}) = (1 - X^{e/p^{d(l)}})^{e(k,l)}.$ Since $1 - X^{n(l)/p^{d(l)}}$ divides $1 - X^{e/p^{d(l)}}$ in R, $\prod_{i=k}^{l} (1 - X^{n(l)/p^{d(l)}})$ divides $(1 - X^{e/p^{d(l)}})^{e(k,l)}$. By (*) we see that $(1 - X^{e/p^{d(l)}})^{e(k,l)}$ divides $1 - X^{e/p^{d(k)-1}}$. Therefore f_l divides $1 - X^{e/p^{d(1)-1}}$. Hence $1 - X^{e/p^{d(1)-1}} \in \bigcap_{i=1}^{\infty} (f_i)$.

Let $f = a_1 X^{\alpha_1} + a_2 X^{\alpha_2} + \cdots + a_n X^{\alpha_n}$ be a nonzero element of R, where $0 \neq a_i \in D$ for each i and $\alpha_1 < \alpha_2 < \cdots < \alpha_n$. We set $\alpha_1 =$ ord (f) (resp. $\alpha_n =$ deg (f)), and call it the *order* (resp. *degree*) of f.

Lemma 2. In Lemma 1, suppose that $\bigcap_{i=1}^{\infty} (f_i)$ is a principal ideal (f) of R. Then we have $f \neq 0$ and

$$\sum_{i=1}^{\infty} n(i) / p^{d(i)} = \deg(f) - \operatorname{ord}(f).$$

Proof. By Lemma 1 we have $f \neq 0$. We may assume that the order of f is zero. We set deg (f)=d. Since $f \in (f_i)$ for each l, we have

$$n(1)/p^{d(1)}+n(2)/p^{d(2)}+\cdots+n(l)/p^{d(l)}\leq d.$$

It follows that $\sum_{i=1}^{\infty} n(i)/p^{d(i)} \le d$. Since $\prod_{i=k}^{l} (1-X^{n(i)/p^{d(i)}})$ divides $(1-X^{e/p^{d(l)}})^{e(k,l)}$ in the proof of Lemma 1, we see that f_l divides $(*) (1-X^{n(1)/p^{d(1)}})(1-X^{n(2)/p^{d(2)}})\cdots(1-X^{n(k-1)/p^{d(k-1)}})(1-X^{e/p^{d(l)}})^{e(k,l)}$. Hence f divides (*). It follows that $d \le n(1)/p^{d(1)} + n(2)/p^{d(2)} + \cdots + n(k-1)/p^{d(k-1)} + ee(k, l)/p^{d(l)}$.

By (*) of the proof of Lemma 1, we have

 $d \le n(1)/p^{d(1)} + n(2)/p^{d(2)} + \dots + n(k-1)/p^{d(k-1)} + ep^{1-d(k)}/(p-1).$ It follows that

$$d\leq \sum_{i=1}^{\infty}n(i)/p^{d(i)}.$$

We see that $\sum_{i=1}^{\infty} n(i) / p^{d(i)} = d$.

Lemma 3. Suppose that D is a field. Then R satisfies six conditions of Theorem of $\S1$.

Proof. Let $r \in S$, and let $x \in R$. r is a unit element of R. It follows that (r): (x) = R. Therefore R satisfies the condition (1) of Theorem.

Lemma 4. Suppose that $G \subseteq \mathbb{R}$. Then there exist two sequences $\{d(1), d(2), d(3), \dots\}$ and $\{n(1), n(2), n(3), \dots\}$ of natural numbers such that (1) $\{d(1), d(2), d(3), \dots\}$ (resp. $\{n(1), n(2), n(3), \dots\}$) satisfies the condition (1) (resp. (2)) of Lemma 1, and (2) $\sum_{i=1}^{\infty} n(i)/p^{d(i)} \in \mathbb{R} - G$.

Proof. Since $1/p \in G$, we have $G \supset Z$. We choose $\alpha \in \mathbf{R} - G$. Since $G \supset Z$, we may take $0 < \alpha < 1$. The *p*-adic expression of α gives desired sequences of natural numbers.

Lemma 5. In Lemma 4, we set $f_n = \prod_{i=1}^n (1 - X^{n(i)/p^{d(i)}})$ for each n. Then the ideal $\bigcap_{i=1}^{\infty} (f_i)$ of R is not principal.

Proof. Suppose that $\bigcap_{i=1}^{\infty} (f_i)$ is a principal ideal (f). By Lemma 2 we have $f \neq 0$ and $\sum_{i=1}^{\infty} n(i)/p^{d(i)} = \deg(f) - \operatorname{ord}(f)$. Since $\deg(f) \in G$ and $\operatorname{ord}(f) \in G$, it follows $\sum_{i=1}^{\infty} n(i)/p^{d(i)} \in G$. This contradicts to the condition (2) of Lemma 4.

Lemma 6 ([4], Corollary 3.1). Suppose that D is a field and that G is contained in the additive group of rational numbers. Then R is a Bezout domain (that is, each finitely generated ideal of R is a principal ideal).

§ 3. Main theorem. Now we can answer to Anderson-Anderson problem by the following theorem.

Theorem. There exists an infinite number of graded integral domains R such that (1) R is a group ring, (2) R satisfies six conditions of Theorem of §1, (3) There exists an integral v-ideal I of R which is never of the form qJ, where $q \in R_s$ and J is a homogeneous integral v-ideal of R of finite type.

Proof. We take a group ring R of Lemma 6. By Lemma 3, R satisfies the condition (2). We take a pair of sequences

 $\{d(1), d(2), d(3), \dots\}$ and $\{n(1), n(2), n(3), \dots\}$

of Lemma 4. We set $f_n = \prod_{i=1}^n (1 - X^{n(i)/p^{d(i)}})$ for each n and set $I = \bigcap_{i=1}^\infty (f_i)$. Then I is an integral v-ideal of $R([2], \S 1, n^\circ 1)$. Suppose that I is of the form qJ for some $q \in R_s$ and some homogeneous integral v-ideal J of R of finite type. Since S consists of unit elements of R, I is a finitely generated ideal of R. By Lemma 6, we see that I is

No. 5]

a principal ideal of R. This contradicts to Lemma 5.

§4. Appendix. Let A be a commutative ring with identity, and let Γ be a commutative cancellative monoid. (We note that Γ is not necessarily torsion-free.) If Γ is a group, I. Connell ([3], Theorem 2, (c)) proved that $A[X; \Gamma]$ is a Noetherian ring if and only if A is a Noetherian ring and Γ is a finitely generated group. We prove now the following result which applies also to the case where Γ is not a group.

Theorem. $A[X; \Gamma]$ is a Noetherian ring, if and only if A is a Noetherian ring and Γ is a finitely generated monoid.

Proof. Assume that $A[X; \Gamma]$ is a Noetherian ring. Then A is clearly a Noetherian ring. A chain of ideals in Γ gives a chain of ideals in $A[X;\Gamma]$. Hence Γ has the ascending chain condition on ideals. Since Γ is also cancellative, every element is a sum of irreducible elements. If c_1, c_2, c_3, \cdots are irreducible elements of Γ , then $Z_0c_1 \subset Z_0c_1 + Z_0c_2 \subset Z_0c_1 + Z_0c_2 + Z_0c_3 \subset \cdots$ is a chain of ideals in Γ where Z_0 is the nonnegative integers; hence all c_i are in some $Z_0c_1 + Z_0c_2 + \cdots + Z_0c_n$. As Γ is cancellative, each c_i is a unit times some one of c_1, c_2, \cdots, c_n . Thus there are only finitely many irreducible elements up to units. Let H be the group of units of Γ . If J is an ideal of A[X; H], then $J + A[X; \Gamma - H]$ is an ideal in $A[X; \Gamma]$. Hence A[X; H] is a Noetherian ring. By the result of Connell, H is a finitely generated group. Therefore Γ is a finitely generated monoid. The sufficiency is clear.

References

- D. D. Anderson and D. F. Anderson: Divisorial ideals and invertible ideals in a graded integral domain. J. Algebra, 76, 549-569 (1982).
- [2] N. Bourbaki: Algèbre commutative. chap. 7. Hermann, Paris (1965).
- [3] I. Connell: On the group ring. Can. J. Math., 15, 650-685 (1963).
- [4] R. Gilmer and T. Parker: Semigroup rings as Prüfer rings. Duke Math. J., 41, 219-230 (1974).
- [5] D. Northcott: Lessons on Rings, Modules and Multiplicities. Cambridge Univ. Press, Cambridge (1968).