56. The μ -Number Constant Stratum of a Quasihomogeneous Function of Corank Two is Smooth

By Masahiko Suzuki

Department of Mathematics, Faculty of Science, Chiba University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1983)

§ 0. Introduction. Let $f: (C^n, 0) \to (C, 0)$ be a germ of a quasihomogeneous function of a Milnor number μ with an isolated critical point. Let $\mathfrak{H}(n, 1)$ be a space of germs of holomorphic functions with an isolated critical point preserving the origin, namely

 $\mathfrak{H}(n, 1) = \{f \mid f : (C^n, 0) \rightarrow (C, 0) \text{ has an isolated critical point}\}.$

V. I. Arnol'd conjectured in [1] that the μ -number constant stratum of a mini-transversal family of f is smooth, where a mini-transversal family implies a family which is transversal to the orbit of the action of the group of germs of biholomorphic mappings preserving the origin in $\mathfrak{S}(n, 1)$. He showed that this conjecture is affirmative for quasihomogeneous functions with inner modality =0, 1 in [1]. We showed it for them with inner modality =2 in [4]. Gabrielov and Kushnirenko showed it for all homogeneous functions with an isolated critical point in [2]. In this paper, we shall announce the affirmative answer to it for all quasihomogeneous functions of corank two with an isolated critical point.

Theorem. Let f be the germ of corank two as above. Then the μ -number constant stratum of a mini-transversal family of f is smooth and its dimension is the number of generators of a monomial basis of a finite dimensional vector space $Q_f = m^2/m(\partial f/\partial x_1, \dots, \partial f/\partial x_n)$ above and on the Newton boundary of f, where m is the maximal ideal of the local ring $C\{x_1, \dots, x_n\}$.

§1. Sketch of a proof. Let $f: (C^n, 0) \rightarrow (C, 0)$ be as above. We define $F: (C^n \times C^{\mu-1}, 0) \rightarrow (C, 0)$ to be the germ of the function

$$F(x, t) = f(x) + \sum_{i=1}^{\mu-1} t_i \phi_i(x),$$

where $\{\phi_1, \dots, \phi_{\mu-1}\}$ is a monomial basis of Q_f . It is well known that the family F_t is a mini-transversal family of f in $\mathfrak{F}(n, 1)$. We denote by \mathcal{S}_F the μ -number constant stratum of the family F_t , namely \mathcal{S}_F $=\{t \in C^{\mu-1} | \mu(F_t) = \mu(f)\}$ as a germ at the origin. If f is quasihomogeneous of type (r_1, \dots, r_n) i.e. $f(t^{r_1}x_1, \dots, t^{r_n}x_n) = tf(x_1, \dots, x_n)$ for any $t \in C$, then we see by Arnol'd [1] that $\mathcal{S}_F \supset \mathcal{A}_F$, where \mathcal{A}_F is the germ at the origin of the set No. 5]

 $\{(t_1, \dots, t_{\mu-1}) \in C^{\mu-1} | t_i = 0 \text{ for } i \text{ for which quasidegree } (\phi_i) < 1 \\ \text{for } (r_1, \dots, r_n) \}.$

We shall consider the following quasihomogeneous functions of three types

$$\begin{array}{ll} f_1(x, y) = x^a + y^b + g(x, y) & a, b \ge 3 \\ f_2(x, y) = x f_1(x, y) & a, b \ge 2 \\ f_3(x, y) = x y f_1(x, y) & a, b \ge 1, \end{array}$$

where g is quasihomogeneous of type (1/a, 1/b) and g does not contain the monomials x^a , y^b with non-zero coefficients and f_i has an isolated critical point. Then we can make the mini-transversal family F_{ii} of f_i (i=1, 2, 3) as follows;

$$F_{1}(x, y, t) = f_{1}(x, y) + \sum_{i=1}^{\mu_{1}-1} t_{i}\phi_{1i}(x, y),$$

where $\{\phi_{11}, \dots, \phi_{1\mu-1}\}$ is a monomial basis of Q_{f_1} which does not contain the monomials $x^i y^{b-1}$ $(i \ge 1)$ and μ_1 is the μ -number of f_1 .

$$F_{2}(x, y, t) = f_{2}(x, y) + \sum_{i=1}^{\mu_{2}-1} t_{i}\phi_{2i}(x, y)$$

$$F'_{2}(x, y, t) = f_{2}(x, y) + \sum_{i=1}^{\mu_{2}-1} t_{i}\phi'_{2i}(x, y),$$

where $\{\phi_{21}, \dots, \phi_{2\mu_2-1}\}$ (resp. $\{\phi'_{21}, \dots, \phi'_{2\mu_2-1}\}$) is a monomial basis of Q_{f_2} which does not contain the monomials y^{b+i} $(i \ge 1)$, $x^{i+1}y^{b-1}$ $(i \ge 1)$ (resp. $x^a y^i$ $(i \ge 1)$) and μ_2 is the μ -number of f_2 .

$$F_{3}(x, y, t) = f_{3}(x, y) + \sum_{i=1}^{\mu_{3}-1} t_{i}\phi_{3i}(x, y),$$

where $\{\phi_{31}, \dots, \phi_{3\mu_3-1}\}$ is a monomial basis of Q_{f_3} which does not contain the monomials $x^{i+1}y^b$ $(i\geq 1)$, y^{b+1+i} $(i\geq 1)$ and μ_3 is the μ -number of f_3 . Then we have the following three lemmata.

Lemma 1. For the family F_{1i} , we have

 $S_{F_1} = \mathcal{A}_{F_1}.$ Lemma 2. If $b \leq a$, then for the family F_{2i} , we have $S_{F_2} = \mathcal{A}_{F_2}.$ If $a \leq b$, then for the family F'_{2i} , we have

$$\mathcal{S}_{F_2'} = \mathcal{A}_{F_2'}.$$

These lemmata are proved by using Brauner's theorem on topological types of irreducible plane curves and Zariski-Hironaka's theorem on topology of reducible plane curves etc. Proofs of the lemmata will appear in Topology (see [5]).

Now we shall prove the theorem as follows. Any germ f of corank two is equivalent to one of the germs of the functions

$$f_i(x, y) + z_1^2 + \cdots + z_{n-1}^2$$
 $i=1, 2, 3$

It is based on Saito's theorem in [3]. We put

$$G_i(x, y, z, t) = F_i(x, y, z, t) + z_1^2 + \cdots + z_{n-2}^2$$
 $i=1, 3$
 $G_2(x, y, z, t) = \begin{cases} F_2(x, y, z, t) + z_1^2 + \cdots + z_{n-2}^2 \\ F_2'(x, y, z, t) + z_1^2 + \cdots + z_{n-2}^2 \end{cases}$

M. Suzuki

Note that $\mu(G_{ii}) = \mu(f)$ if and only if $\mu(F_{ii}) = \mu(f_i)$. Hence we have $S_{G_i} = \mathcal{A}_{G_i}$ from the preceding lemmata. It is well known that for any mini-transversal family F_i of f in $\mathfrak{H}(n, 1)$, there exists a biholomorphic mapping $\tau: (C^{\mu-1}, 0) \to (C^{\mu-1}, 0)$ under which the germ F is equivalent to the germ G_i . By the mapping τ , we have an analytic isomorphism $S_F \cong S_{G_i}$. Hence the stratum S_F is smooth and its dimension is equal to the number of generators of a monomial basis of Q_f above and on the Newton boundary of f (see the definition of \mathcal{A}_F). This completes the proof of the theorem.

References

- V. I. Arnol'd: Normal forms of functions in the neighborhoods of degenerate critical points. Russian Math. Surveys, 29, 10-50 (1974).
- [2] A. M. Gabrielov and A. G. Kushnirenko: Description of the deformations with constant Milnor number for homogeneous functions. Funkt. Anal. i Ego Pril., vol. 9, no. 4, pp. 67–68 (1975).
- [3] K. Saito: Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. math., 14, 123-142 (1971).
- [4] E. Yoshinaga and M. Suzuki: Normal forms of non-degenerate quasihomogeneous functions with inner modality ≤4. ibid., 55, 185-206 (1979).
- [5] M. Suzuki: The stratum with constant Milnor number of a minitransversal family of a quasihomogeneous function of corank two (to appear in Topology).