55. The Exponential Calculus of Microdifferential Operators of Infinite Order. IV

By Takashi Aoki
Department of Mathematics, Kinki University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1983)

1. Introduction. In this note we show that there is a formal symbol q of order at most 1-0 (see [1], [2] for the notation) satisfying (1.1)

$$
\exp : p:=: \exp q: .
$$

Here p is a formal symbol of order at most $1-0$. That is, the exponential of an operator has an exponential symbol. Such q can be calculated from p.
2. Exponential of operators. Let X be an open set in C^{n} with coordinates $x=\left(x_{1}, \cdots, x_{n}\right), \Omega$ a conic open set in $T^{*} X \simeq X \times C_{\xi}^{n}$. Let $p(t ; x, \xi)$ be a formal symbol of order at most $1-0$ defined in Ω. We shall consider the operator $\exp (s: p(t ; x, \xi):)(s \in \boldsymbol{C})$. Let us define a sequence $\left\{p^{(k)}(t ; x, \xi)\right\}(k=0,1,2, \cdots)$ of formal symbols by

$$
\begin{equation*}
p^{(0)}(t ; x, \xi)=1, \tag{2.1}
\end{equation*}
$$

(2.2) $\quad p^{(k+1)}(t ; x, \xi)=\left.\exp \left(t \partial_{\xi} \cdot \partial_{y}\right) p(t ; x, \xi) p^{(k)}(t ; y, \eta)\right|_{\eta=\xi} ^{y=x}$.

Here $k=0,1,2, \cdots$. Then we set

$$
\begin{equation*}
P(t ; s, x, \xi)=\sum_{k=0}^{\infty} \frac{s^{k}}{k!} p^{(k)}(t ; x, \xi) . \tag{2.3}
\end{equation*}
$$

Here $s \in C$. By the definition we have $: p^{(k)}(t ; x, \xi):=(: p(t ; x, \xi):)^{k}$. Therefore $P(t ; s, x, \xi)$ formally satisfies the following differential equation:

$$
\begin{equation*}
\partial_{s} P(t ; s, x, \xi)=\left.\exp \left(t \partial_{\xi} \cdot \partial_{y}\right) p(t ; x, \xi) P(t ; s, y, \eta)\right|_{\eta=\xi} ^{y=x}, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
P(t ; 0, x, \xi)=1 \tag{2.5}
\end{equation*}
$$

Moreover we have
Proposition 1. For every $s \in C$ the formal power series $P(t ; s, x, \xi)$ in t is a formal symbol defined in Ω.

Hence $P(t ; s, x, \xi)$ defines an operator : $P(t ; s, x, \xi)$: which satisfies

$$
\begin{equation*}
\partial_{s}: P(t ; s, x, \xi):=: p(t ; x, \xi):: P(t ; s, x, \xi): \tag{2.6}
\end{equation*}
$$

Therefore $\exp (s: p(t ; x, \xi):)$ makes sense, which is defined by (2.8) $\quad \exp (s: p(t ; x, \xi):)=: P(t ; s, x, \xi):$.
3. Statement of the results. Let Ω be a conic open set in $T^{*} X$, $p(t ; x, \xi)=\sum_{j=0}^{\infty} t^{j} p_{j}(x, \xi)$ a formal symbol of order at most $1-0$ defined in Ω. Let us define two sequences of symbols $\left\{\psi_{i, k}^{(j)}(x, y, \xi, \eta)\right\}$ and $\left\{q_{k}^{(j)}(x, \xi)\right\}$ defined respectively in $\Omega \times \Omega$ and in Ω by the following recursion formulae:

$$
\begin{gather*}
\psi_{l, 0}^{(0)}=p_{l}(x, \xi), \quad l=0,1,2, \cdots, \tag{3.1}\\
\psi_{l, 0}^{(j)}=0, \quad j>0, \quad l=0,1,2, \cdots, \tag{3.2}\\
q_{k}^{(j+1)}(x, \xi)=\frac{1}{j+1} \sum_{l=0}^{k} \psi_{l, k-l}^{(j)}(x, x, \xi, \xi), \tag{3.3}\\
\psi_{l, k+1}^{(j)}=\frac{1}{k+1}\left\{\partial_{\xi} \cdot \partial_{y} \psi_{l, k}^{(j)}+\sum_{\nu=0}^{l} \sum_{\mu=0}^{j-1} \partial_{\xi} \psi_{\nu, k}^{(\mu)} \cdot \partial_{y} q_{l-\nu}^{(j-\mu)}(y, \eta)\right\} . \tag{3.4}
\end{gather*}
$$

If $\psi_{\mu, \nu}^{(i)}$ is known for $i+\mu+\nu \leq m-1$ then $q_{k}^{(j)}$ is defined for $k+j \leq m$ by (3.3). Then $\psi_{\mu, \nu}^{(i)}$ is determined for $i+\mu+\nu=m$ by (3.1), (3.2), (3.4). Now we define a formal power series in t by

$$
\begin{equation*}
q(t ; s, x, \xi)=\sum_{k=0}^{\infty} t^{k} \sum_{j=1}^{k+1} s^{j} q_{k}^{(j)}(x, \xi), \quad s \in C \tag{3.5}
\end{equation*}
$$

Then we have
Theorem 2. The formal series $q(t ; s, x, \xi)$ is a formal symbol of order at most 1-0 defined in Ω so that

$$
\begin{equation*}
: \exp (q(t ; s, x, \xi)):=\exp (s: p(t ; x, \xi):) \tag{3.6}
\end{equation*}
$$

holds in \mathcal{E}^{R}.
Let λ be a real number such that $0 \leq \lambda<1$.
Theorem 3. If $p_{l}(x, \xi)$ is of order at most $(l+1) \lambda-l$ for each $l=0,1,2, \cdots$, then $q_{k}^{(j)}(x, \xi)$ is of order at most $(k+1) \lambda-k$ for every $k=0,1,2, \cdots, 1 \leq j \leq k+1$. Hence $q_{k}(s, x, \xi)=\sum_{j=1}^{k+1} s^{j} q_{k}^{(j)}(x, \xi)$ is also of order at most $(k+1) \lambda-k$ for any k.

The preceding theorem declares that $p(t ; x, \xi)$ and $q(t ; 1, x, \xi)$ have the same principal part.
4. Outline of the proof of Theorem 2. We assume that $P(t ; s, x, \xi)$ defined by (2.3) can be written in the form

$$
\begin{equation*}
P(t ; s, x, \xi)=\exp (q(t ; s, x, \xi)) \tag{4.1}
\end{equation*}
$$

Then the left-hand side of (2.4) is $\partial_{s} q(t ; s, x, \xi) \exp (q(t ; s, x, \xi))$. It follows from the result of our preceding note [2] that the right-hand side of (2.4) is written in the form

$$
\begin{equation*}
\varphi(t ; s, x, \xi) \exp (q(t ; s, x, \xi)) \tag{4.2}
\end{equation*}
$$

Here φ is a formal symbol of order at most $1-0$ that can be calculated from q. We set $q(t ; s, x, \xi)=\sum s^{j} t^{k} q_{k}^{(j)}(x, \xi)$ and define $q_{k}^{(j)}$ successively from the following identity:

$$
\begin{equation*}
\partial_{s} q(t ; s, x, \xi)=\varphi(t ; s, x, \xi) \tag{4.3}
\end{equation*}
$$

Then we have (3.1)-(3.4). Detailed proof will be published elsewhere.

References

[1] T. Aoki: Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I (to appear in Ann. Inst. Fourier).
[2] -: The exponential calculus of microdifferential operators of infinite order. III. Proc. Japan Acad., 59A, 79-82 (1983).

