53. A Generalization of the Fenchel-Moreau Theorem

By Shozo Koshi and Naoto Komuro
Department of Mathematics, Hokkaido University
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1983)

1. Let F be a real valued convex function defined on a locally convex space. The Fenchel-Moreau theorem is that $F(x)=F^{* *}(x)$ if and only if F is lower semi-continuous at x ([1]). Many authors considered to generalize this theorem when F is a convex operator defined on a topological linear spaces to Riesz spaces. For example, J. Zowe has proved $F(x)=F^{* *}(x)$ if F is continuous at x and x is an interior point of the domain of F. We shall consider the theorem in the case where F is not necessary continuous, nor the interior of the domain is non-empty. In the following, let X and Y be two Hausdorff locally convex topological vector spaces and Y is assumed further a Dedekind complete Riesz space (order complete vector lattice).

To relate the order structure and the topological structure, we demand furthermore that the linear topology of Y is normal i.e. the family of the following sets

$$
\left(V+Y^{+}\right) \cap\left(V-Y^{+}\right) ; V \text { is an open set containing } 0,
$$

constitutes a base of neighbourhoods of 0 for Y, where Y^{+}denotes the totality of elements of Y equal to or greater than 0 . A convex operator F defined on X into Y is to mean that the domain of F (denoted by $D(F)$) is a non-empty convex subset of X and

$$
F\left(\alpha x_{1}+\beta x_{2}\right) \leqq \alpha F\left(x_{1}\right)+\beta F\left(x_{2}\right)
$$

for $\alpha+\beta=1(\alpha, \beta \in[0,1])$ and $x_{1}, x_{2} \in D(F)$.
We shall define the conjugate function F^{*} of F. Let $L(X, Y)$ be the totality of all continuous linear operator from X to Y. For $A \in L(X, Y)$, we define F^{*} as follows:

$$
F^{*}(A)=\sup \{A(x)-F(x) ; x \in D(F)\} .
$$

It is easy to see that F^{*} is a convex operator from $L(X, Y)$ to Y. Similarly, considering $X \subset L(L(X, Y), Y)$, we can define the double conjugate of F :

$$
F^{* *}(x)=\sup \left\{A(x)-F^{*}(A) ; A \in L(X, Y)\right\}
$$

As usual, we define the subdifferential of F at $x \in D(F)$ with

$$
\partial F(x)=\left\{A \in L(X, Y) ; A(x)-A\left(x^{\prime}\right) \geq F(x)-F\left(x^{\prime}\right), x^{\prime} \in D(F)\right\} .
$$

Furthermore, we shall define the y-subdifferential for $y \in Y^{+}$as follows:
$\partial_{y} F(x)=\left\{A \in L(X, Y) ; A(x)-A\left(x^{\prime}\right) \geq F(x)-F\left(x^{\prime}\right)-y, x^{\prime} \in D(F)\right\}$.
It is easy to see that
(a) $\partial F(x) \neq \phi$ implies $\partial_{v} F(x) \neq \phi$,
(b) $0 \leq y_{1} \leq y_{2}$ implies $\partial_{y_{1}} F(x) \subset \partial_{y_{2}} F(x)$.

In this note, we shall use the subdifferential $\partial_{y} F(x)$ mainly, although $\partial F(x)$ makes important roles in many papers.
2. We shall show the following lemmas.

Lemma 1. $\quad F^{* *}(z)=F(z)$ iff $\inf \left\{y>0, \partial_{y} F(z) \neq \phi\right\}=0$.
Proof. Since $\partial_{y} F(z) \ni A_{1}$, iff $A_{1}(z)-F(z) \geq A_{1}\left(x^{\prime}\right)-F\left(x^{\prime}\right)-y$ for x^{\prime} $\in D(F)$ by definition, we have

$$
\begin{aligned}
F^{* *}(z) & =\sup _{A \in L(X, Y)}\left(A(z)-F^{*}(A)\right) \\
& =\sup _{A}\left\{A(z)-\sup \left(A\left(x^{\prime}\right)-F\left(x^{\prime}\right), x^{\prime} \in D(F)\right)\right\} \\
& \geqq A_{1}(z)-\left\{A_{1}(z)-F(z)+y\right\}=F(z)-y .
\end{aligned}
$$

Hence $F^{* *}(z) \geq F(z)$. Since $F^{* *}(z) \leqq F(z)$ is always true, we have $F(z)$ $=F^{* *}(z)$.

Conversely, let $A \in D\left(F^{*}\right)$ and $y=F(z)-A(z)+F^{*}(A)$. We see easily $y \geq 0$ and $A \in \partial_{y} F(z)$.

Since $0 \leqq \inf \left\{y ; \partial_{y} F(z) \neq \phi\right\} \leqq \inf \left\{F(z)-A(z)-F^{*}(A) ; A \in D\left(F^{*}\right)\right\}$ $=\inf \left\{F^{* *}(z)-A(z)+F^{*}(A) ; A \in D\left(F^{*}\right)\right\}=0$, we have proved the lemma.

Lemma 2. Let F be a convex operator defined on X to Y with $F(0)=0$ and continuous at 0 . Then, every linear operator A on X to Y is continuous if $F(x) \geqq A(x)$ for all $x \in X$.

Proof. For each symmetric open set V containing 0 of Y, there exists a neighbourhood U of 0 in X such that $F(U) \subset V$. Since $A(h)$ $\leqq F(h)$ and $A(-h) \leqq F(-h)$, we have

$$
A(h) \in\left(V+Y^{+}\right) \cap\left(V-Y^{+}\right) \quad \text { for } h \in U .
$$

Since the topology of Y is normal, A is continuous.
Lemma 3. Let f be a positively homogeneous convex operator such that $D(f)$ is a convex cone of X, and let g be a positively homogeneous concave operator ($-g$ is a convex operator) with $D(g)=X$, and let $f(x) \geqq g(x)$ for $x \in D(f)$. Then

$$
h(x)=\inf \{f(y)-g(y-x) \text { for } y \in D(f)\}
$$

is a positively homogeneous convex operator from X to Y.
By using the same method used in the proof of Hahn-Banach theorem, we can prove the following lemma.

Lemma 4. For the positively homogeneous convex operator h defined in Lemma 3, there exists a linear operator ψ from X to Y such that

$$
\psi(x) \leqq h(x) \quad \text { for } x \in X
$$

Hence, we have $g(x) \leqq \psi(x)$ for $x \in X$ and $\psi(x) \leqq f(x)$ for $x \in D(f)$.
3. We shall show now a generalization of the Fenchel-Moreau theorem.

Theorem 1. Let F be a convex operator from X to Y such that $D(F)$ is not necessary to have an interior point and $S_{z}=\left\{y \in Y^{+}\right.$; $F(U \cap D(F)) \subset F(z)-y+Y^{+}$for some neighbourhood U of $\left.z\right\} \neq \phi$. Then
(1) $\inf S_{z}=0$ implies $F^{* *}(z)=F(z)$.

Conversely,
(2) If $\left(Y^{+}\right)^{\circ} \neq \phi$, then

$$
F(z)=F^{* *}(z)+\inf S_{z} .
$$

Hence $F^{* *}(z)=F(z)$ implies $\inf S_{z}=0$.
Proof. (1) For every $y \in S_{z}$, there exists a convex open set U of z (symmetric w. r. to z) such that

$$
F(U \cap D(F)) \subset F(z)-y+Y^{+}
$$

Hence, we can easily find that

$$
f(x)=F_{y}^{\prime}(z, x)=\inf _{\lambda>0} \frac{1}{\lambda}\{F(z+\lambda x)-F(z)+y\} \geqq-y \quad \text { for } x \in U-z
$$

If we define a gauge function $G(x)=\inf \{\lambda>0, x \in \lambda(U-z)\}$, then $G(x)$ is a continuous convex function on X, so that $g(x)=-2 G(x) y$ is a concave continuous operator from X to Y and $f(x) \geqq g(x)$ for all x $\in D(f)$.

By Lemma 4, there exists a linear operator ψ such that $f(x)$ $\geqq \psi(x) \geqq g(x)$. But by Lemma $2, \psi$ is continuous since $g(x)$ is continuous. Hence

$$
0 \leqq \inf \left\{y ; \partial_{y} F(z) \neq \phi\right\} \leqq \inf S_{z}=0 .
$$

By Lemma 1, we find $F^{* *}(z)=F(z)$.
(2) It is easy to see that Y^{+}is closed if $\left(Y^{+}\right)^{\circ} \neq \phi . \quad$ Let $y_{0}=\inf S_{z}$ >0 and y is not greater than y_{0}, then there exists some positive number $\varepsilon>0$ with $(1+\varepsilon) y$ is not an element of S_{z}. Hence, there exists a sequence $\left\{z_{\lambda}\right\}$ convergent to z where $F\left(z_{\lambda}\right)$ is not greater than $F(z)$ $-(1+\varepsilon) y$. From this fact, we find that
(*) $\quad F_{y}^{\prime}\left(z, z_{\lambda}-z\right)$ is not greater than $-\varepsilon y$.
Suppose $y \in\left(Y^{+}\right)^{\circ}$. Then we shall prove that $\partial_{v} F(z)=\phi$. If $\psi \in \partial_{y} F(z)$, then it follows

$$
\psi(x) \leqq f(x) \quad \text { for } x \in D(f)
$$

and so by $(*) \psi\left(z_{\lambda}-z\right)$ is not greater than $-\varepsilon y$.
But, there exists a neighbourhood U of 0 such that $x \geqq-\varepsilon y$ for all $x \in U$ and $\psi\left(z_{\lambda}-z\right) \oplus U$. Hence, ψ is not continuous and so it is impossible.

In general case, suppose $y \in Y^{+}$, then there exists $y_{1} \geq y$ such that $y_{1} \in\left(Y^{+}\right)^{\circ}$ and y_{1} is not greater than y_{0}. Since $\partial_{y_{1}} F(z)=\phi$, we have $\partial_{y} F(z)=\phi$, as remarked in (b) of $\S 1$ of this note. Hence, we have

$$
F^{* *}(z)=F(z) \quad \text { implies } \quad \inf S_{z}=0
$$

By the same argument, we have

$$
F(z)=F^{* *}(z)+\inf S_{z} .
$$

Remark 1. If we don't assume $\left(Y^{+}\right)^{\circ} \neq \phi$, then (2) of Theorem 1 is not true in general, although (1) is true in any case.

Remark 2. There exists some example that the convex operator
F is not continuous in everywhere and Theorem 1 is still valid. For the case $Y=l_{p}(\infty>p \geqq 1)$, we know that $\left(Y^{+}\right)^{\circ}=\phi$. In this case we have the following theorem.

Theorem 2. Let $F=\left(f_{1}, f_{2}, \cdots\right)$ be a convex operator from X to l_{p}. Suppose that $f^{* *}(z)$ is defined for $z \in D(F)$, then $F^{* *}(z)=F(z)$ iff each $f_{i}(i=1,2, \cdots)$ is lower semi-continuous at z.

References

[1] A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problems. NorthHolland Pub. Company (1978).
[2] S. S. Kutateladze: Convex operators. Russian Math. Surveys, 34 (1979).
[3] --: Convex-programming. Soviet Math. Dokl., 20, 391-393 (1979).
[4] R. T. Rockafellar: Conjugate duality and optimization. NSF Regional Conference Series, SIAM Publ., no. 16 (1974).
[5] J. Zowe: Subdifferentiability of convex functions with values in an ordered vector space. Math. Scand., 34, 69-83 (1974).
[6] -: A duality theorem for a convex programming problem in order complete vector lattices. J. Math. Anal. Appl., 50, 273-287 (1975).

