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1. Let F be a real valued convex function defined on a locally
convex space. The Fenchel-Moreau theorem, is that F(x)=F**(x) if
and only if F is lower semi-continuous at x ([1]). Many authors con-
sidered to generalize this theorem, when F is a convex operator defined
on a topological linear spaces to Riesz spaces. For example, J. Zowe
has proved F(x)-F**(x)if F is continuous at x and x is an interior
point of the domain of F. We shall consider the theorem, in the case
where F is not necessary continuous, nor the interior of the domain
is non-empty. In the following, let X and Y be two Hausdorff locally
convex topological vector spaces and Y is assumed further a Dedekind
complete Riesz space (order complete vector lattice).

To relate the order structure and the topological structure, we
demand urthermore that the linear topology of Y is normal i.e. the
family of the following sets

(V+ Y/) (V- Y/) V is an open set containing 0,
constitutes a base of neighbourhoods of 0 for Y, where Y/ denotes the
totality of elements of Y equal to or greater than 0. A convex oper-
ator F defined on X into Y is to mean that the domain of F (denoted
by D(F)) is a non-empty convex subset of X and

F(ox+x)
_
oF(x)+F(x)

or a+fl= 1 (a, fl e [0, 1]) and x, x. e D(F).
We shall define the conjugate function F* of F. Let. L(X, Y) be

the totality of all continuous linear operator from X to Y. For
A e L(X, Y), we define F* as follows

F*(A)= sup {A(x)-F(x) x e D(F)}.
It is easy to see that F* is a convex operator from. L(X, Y) to Y.
Similarly, considering XcL(L(X,Y),Y), we can define the double
conjugate of F"

F**(x)=sup {A(x)-F*(A) A e L(X, Y)}.
As usual, we define the subdifferential of F at x e D(F) with

OF(x)--{A e L(X, Y); A(x)--A(x’)_F(x)--F(x’), x’ e D(F)}.
Furthermore, we shall define the y-subdifferential or y e Y as ollows

3F(x)--{A e L(X, Y) A(x)-A(x’)_F(x),-F(x’)- y, x’ e D(F)}.
It is easy to see that

(a) 3F(x) implies 3F(x)
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(b) O_y_y implies ,F(x)3F(x).
In this note, we shall use the subdifferential 3F(x) mainly, although
3F(x) makes important roles in many papers.

2. We shall show the ollowing lemmas.
Lemma 1. F**(z)=F(z)iff in {y0, F(z)}=0.
Proof. Since 3F(z) A, iff A(z)--F(z)_A(x’)--F(x’)--y or x’

e D(F) by definition, we have
F**(z)-- sup (A(z)-F*(A))

A@L(X,Y)

--sup {A(z)-sup (A(x’)-F(x’), x’ e D(F))}
A

Al(z)-- {Al(z)-- F(z)+y}= F(z) y.
Hence F**(z)_F(z). Since F**(z)<=F(z) is always true, we have F(z)
=F**(z).

Conversely, let A e D(F*) and y=F(z)--A(z)+F*(A). We see
easily y_0 and A e 3F(z).

Since 0 =< in {y; 3F(z)} in {F(z)-A(z)-F*(A) A e D(F*)}
=inf {F**(z)--A(z)+F*(A) A e D(F*)}= 0, we have proved the lemma.

Lemma 2. Let F be a convex operator defined on X to Y with
F(0)=0 and continuous at O. Then, every linear operator A on X to
Y is continuous if F(x)=A(x) for all x e X.

Proof. For each symmetric open set V containing 0 of Y, there
exists a neighbourhood U of 0 in X such that F(U)V. Since A(h)
F(h) and A(-h)<=F(-h), we have

A(h) e (V+ Y/) (V- Y/) or h e U.
Since the topology of Y is normal, A is continuous.

Lemma :. Let f be a positively homogeneous convex operator
such that D(f) is a convex cone of X, and let g be a positively homo-
geneous concave operator (-g is a convex operator) with D(g)=X,
and let f(x)=g(x) for x e D(f). Then

h(x) inf {f(y)- g(y- x) for y e D(f)}
is a positively homogeneous convex operator from X to Y.

By using the same method used in the proof of Hahn-Banach
theorem, we can prove the ollowing lemma.

Lemma 4. For the positively homogeneous convex operator h

defined in Lemma 3, there exists a linear operator 4z from X to Y such
that

(x) <= h(x) or x e X.
Hence, we have g(x)=(x) for x e X and (x)f(x) for x e D(f).

:. We shall show now a generalization of the Fenchel-Moreau
theorem.

Theorem 1. Let F be a convex operator from X to Y such that
D(F) is not necessary to have an interior point and Sz={y e Y/;
F(UD(F))cF(z)-y+Y for some neighbourhood U of z}#. Then
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(1) inf S=O implies F**(z)=F(z).
Conversely,

(2) If (Y/)-, then
F(z) F**(z)/ inf S.

Hence F**(z)--F(z) implies inf S=0.

Proof. (1) For every y e S, there exists a convex open set U of
z (symmetric w. r. to z) such that

F(U D(F)) F(z) y+ Y/.

Hence, we can easily find that

x) inf l=-(F(z-x) F(z)+y}’ y or x e U- z.f(x) F.(z,
0

If we define a gauge function G(x)=inf (0, x e (U-z)}, then G(x)
is a continuous convex function on X, so that g(x)---2G(x)y is a
concave continuous operator from. X to Y and f(x)>=g(x) for all x
e D(f).

By Lemma 4, there exists a linear operator such that f(x)
>=(x)>=g(x). But by Lemma 2, @ is continuous since g(x) is con-
tinuous. Hence

0_<_inf (y; F(z) A=}<__inf S--O.
By Lemma 1, we find F**(z)-F(z).

(2) It is easy to see that Y/ is closed if (Y/) 4=. Let yo=infS
0 and y is not greater than Y0, then there exists some positive num-
ber 0 with (ld-Dy is not an element of S. Hence, there exists a
sequence {z} convergent to z where F(z) is not greater than F(z)
-(ld-Dy. From this fact, we find that

(.) F(z, z-z) is not greater than y.
Suppose y e (Y/). Then we shall prove that F(z)=. If e F(z),
then it follows

(x)f(x) for x e D(f)
and so by (.) (z-z) is not greater than -y.

But, there exists a neighbourhood U of 0 such that x>-y for
all x e U and (z-z) U. Hence, is not continuous and so it is
impossible.

In general case, suppose y e Y/, then there exists y_y such that
y e (Y/) and y is not greater than Y0. Since 3,F(z)-, we have
3F(z)-, as remarked in (b) of 1 of this note. Hence, we have

F**(z).=F(z) implies inf S-O.
By the same argument, we have

F(z) F**(z)- inf S.
Remark 1. If we don’t assume (Y/) 4=, then (2) of Theorem. 1

is not true in general, although (1) is true in any case.
Remark 2. There exists some example that the convex operator
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F is not continuous in everywhere and Theorem, I is still valid. For
the case Y=l(cp>=l), we know that (y/)o=. In this case we
have the following theorem.

Theorem 2. Let F--(fl,f2, ...) be a convex operator from X to
l. Suppose that f**(z) is defined for z e D(F), then F**(z)=F(z) iff
each f (i= 1, 2,...)is lower semi-continuous at z.
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