53. A Generalization of the Fenchel-Moreau Theorem

By Shozo KOSHI and Naoto KOMURO Department of Mathematics, Hokkaido University (Communicated by Kôsaku YOSIDA, M. J. A., May 12, 1983)

1. Let F be a real valued convex function defined on a locally convex space. The Fenchel-Moreau theorem is that $F(x)=F^{**}(x)$ if and only if F is lower semi-continuous at x ([1]). Many authors considered to generalize this theorem when F is a convex operator defined on a topological linear spaces to Riesz spaces. For example, J. Zowe has proved $F(x)=F^{**}(x)$ if F is continuous at x and x is an interior point of the domain of F. We shall consider the theorem in the case where F is not necessary continuous, nor the interior of the domain is non-empty. In the following, let X and Y be two Hausdorff locally convex topological vector spaces and Y is assumed further a Dedekind complete Riesz space (order complete vector lattice).

To relate the order structure and the topological structure, we demand furthermore that the linear topology of Y is *normal* i.e. the family of the following sets

 $(V+Y^*)\cap (V-Y^*)$; V is an open set containing 0, constitutes a base of neighbourhoods of 0 for Y, where Y^* denotes the totality of elements of Y equal to or greater than 0. A convex operator F defined on X into Y is to mean that the domain of F (denoted by D(F)) is a non-empty convex subset of X and

 $F(\alpha x_1 + \beta x_2) \leq \alpha F(x_1) + \beta F(x_2)$

for $\alpha + \beta = 1$ ($\alpha, \beta \in [0, 1]$) and $x_1, x_2 \in D(F)$.

We shall define the conjugate function F^* of F. Let L(X, Y) be the totality of all continuous linear operator from X to Y. For $A \in L(X, Y)$, we define F^* as follows:

 $F^*(A) = \sup \{A(x) - F(x); x \in D(F)\}.$

It is easy to see that F^* is a convex operator from L(X, Y) to Y. Similarly, considering $X \subset L(L(X, Y), Y)$, we can define the double conjugate of F:

 $F^{**}(x) = \sup \{A(x) - F^{*}(A); A \in L(X, Y)\}.$

As usual, we define the subdifferential of F at $x \in D(F)$ with

 $\partial F(x) = \{ A \in L(X, Y) ; A(x) - A(x') \ge F(x) - F(x'), x' \in D(F) \}.$

Furthermore, we shall define the y-subdifferential for $y \in Y^+$ as follows :

 $\partial_{y}F(x) = \{A \in L(X, Y); A(x) - A(x') \ge F(x) - F(x') - y, x' \in D(F)\}.$

It is easy to see that

(a) $\partial F(x) \neq \phi$ implies $\partial_{\nu} F(x) \neq \phi$,

No. 5]

(b) $0 \le y_1 \le y_2$ implies $\partial_{y_1} F(x) \subset \partial_{y_2} F(x)$. In this note, we shall use the subdifferential $\partial_y F(x)$ mainly, although $\partial F(x)$ makes important roles in many papers.

2. We shall show the following lemmas.

Lemma 1. $F^{**}(z) = F(z)$ iff $\inf \{y > 0, \partial_y F(z) \neq \phi\} = 0$.

Proof. Since $\partial_y F(z) \ni A_1$, iff $A_1(z) - F(z) \ge A_1(x') - F(x') - y$ for $x' \in D(F)$ by definition, we have

$$\begin{split} F^{**}(z) &= \sup_{A \in L(X,Y)} (A(z) - F^*(A)) \\ &= \sup_{A} \{A(z) - \sup (A(x') - F(x'), \ x' \in D(F))\} \\ &\geq A_1(z) - \{A_1(z) - F(z) + y\} = F(z) - y. \end{split}$$

Hence $F^{**}(z) \ge F(z)$. Since $F^{**}(z) \le F(z)$ is always true, we have $F(z) = F^{**}(z)$.

Conversely, let $A \in D(F^*)$ and $y=F(z)-A(z)+F^*(A)$. We see easily $y \ge 0$ and $A \in \partial_y F(z)$.

Since $0 \leq \inf \{y; \partial_y F(z) \neq \phi\} \leq \inf \{F(z) - A(z) - F^*(A); A \in D(F^*)\}$ = $\inf \{F^{**}(z) - A(z) + F^*(A); A \in D(F^*)\} = 0$, we have proved the lemma.

Lemma 2. Let F be a convex operator defined on X to Y with F(0)=0 and continuous at 0. Then, every linear operator A on X to Y is continuous if $F(x) \ge A(x)$ for all $x \in X$.

Proof. For each symmetric open set V containing 0 of Y, there exists a neighbourhood U of 0 in X such that $F(U) \subset V$. Since $A(h) \leq F(h)$ and $A(-h) \leq F(-h)$, we have

 $A(h) \in (V+Y^*) \cap (V-Y^*)$ for $h \in U$.

Since the topology of Y is normal, A is continuous.

Lemma 3. Let f be a positively homogeneous convex operator such that D(f) is a convex cone of X, and let g be a positively homogeneous concave operator (-g is a convex operator) with D(g)=X, and let $f(x) \ge g(x)$ for $x \in D(f)$. Then

$$h(x) = \inf \{f(y) - g(y - x) \text{ for } y \in D(f)\}$$

is a positively homogeneous convex operator from X to Y.

By using the same method used in the proof of Hahn-Banach theorem, we can prove the following lemma.

Lemma 4. For the positively homogeneous convex operator h defined in Lemma 3, there exists a linear operator ψ from X to Y such that

 $\psi(x) \leq h(x)$ for $x \in X$.

Hence, we have $g(x) \leq \psi(x)$ for $x \in X$ and $\psi(x) \leq f(x)$ for $x \in D(f)$.

3. We shall show now a generalization of the Fenchel-Moreau theorem.

Theorem 1. Let F be a convex operator from X to Y such that D(F) is not necessary to have an interior point and $S_z = \{y \in Y^+; F(U \cap D(F)) \subset F(z) - y + Y^+ \text{ for some neighbourhood } U \text{ of } z\} \neq \phi$. Then

(1) inf $S_z = 0$ implies $F^{**}(z) = F(z)$.

Conversely,

(2) If $(Y^+)^\circ \neq \phi$, then

$$F(z) = F^{**}(z) + \inf S_z.$$

Hence $F^{**}(z) = F(z)$ implies $\inf S_z = 0$.

Proof. (1) For every $y \in S_z$, there exists a convex open set U of z (symmetric w. r. to z) such that

$$F(U \cap D(F)) \subset F(z) - y + Y^+$$
.

Hence, we can easily find that

$$f(x) = F'_y(z, x) = \inf_{\lambda > 0} \frac{1}{\lambda} \{F(z + \lambda x) - F(z) + y\} \ge -y \quad \text{for } x \in U - z.$$

If we define a gauge function $G(x) = \inf \{\lambda > 0, x \in \lambda(U-z)\}$, then G(x) is a continuous convex function on X, so that g(x) = -2G(x)y is a concave continuous operator from X to Y and $f(x) \ge g(x)$ for all $x \in D(f)$.

By Lemma 4, there exists a linear operator ψ such that $f(x) \ge \psi(x) \ge g(x)$. But by Lemma 2, ψ is continuous since g(x) is continuous. Hence

$$0 \leq \inf \{y; \partial_y F(z) \neq \phi\} \leq \inf S_z = 0.$$

By Lemma 1, we find $F^{**}(z) = F(z)$.

(2) It is easy to see that Y^+ is closed if $(Y^+)^{\circ} \neq \phi$. Let $y_0 = \inf S_z > 0$ and y is not greater than y_0 , then there exists some positive number $\varepsilon > 0$ with $(1+\varepsilon)y$ is not an element of S_z . Hence, there exists a sequence $\{z_{\lambda}\}$ convergent to z where $F(z_{\lambda})$ is not greater than $F(z) - (1+\varepsilon)y$. From this fact, we find that

(*) $F'_{u}(z, z_{i}-z)$ is not greater than $-\varepsilon y$.

Suppose $y \in (Y^*)^\circ$. Then we shall prove that $\partial_y F(z) = \phi$. If $\psi \in \partial_y F(z)$, then it follows

$$\psi(x) \leq f(x)$$
 for $x \in D(f)$

and so by (*) $\psi(z_{i}-z)$ is not greater than $-\varepsilon y$.

But, there exists a neighbourhood U of 0 such that $x \ge -\varepsilon y$ for all $x \in U$ and $\psi(z_{\lambda}-z) \in U$. Hence, ψ is not continuous and so it is impossible.

In general case, suppose $y \in Y^+$, then there exists $y_1 \ge y$ such that $y_1 \in (Y^+)^\circ$ and y_1 is not greater than y_0 . Since $\partial_{y_1} F(z) = \phi$, we have $\partial_y F(z) = \phi$, as remarked in (b) of §1 of this note. Hence, we have

 $F^{**}(z) = F(z)$ implies $\inf S_z = 0$.

By the same argument, we have

 $F(z) = F^{**}(z) + \inf S_z.$

Remark 1. If we don't assume $(Y^+)^{\circ} \neq \phi$, then (2) of Theorem 1 is not true in general, although (1) is true in any case.

Remark 2. There exists some example that the convex operator

180

F is not continuous in everywhere and Theorem 1 is still valid. For the case $Y = l_p(\infty > p \ge 1)$, we know that $(Y^*)^\circ = \phi$. In this case we have the following theorem.

Theorem 2. Let $F = (f_1, f_2, \cdots)$ be a convex operator from X to l_p . Suppose that $f^{**}(z)$ is defined for $z \in D(F)$, then $F^{**}(z) = F(z)$ iff each f_i $(i=1, 2, \cdots)$ is lower semi-continuous at z.

References

- A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problems. North-Holland Pub. Company (1978).
- [2] S. S. Kutateladze: Convex operators. Russian Math. Surveys, 34 (1979).
- [3] ——: Convex-programming. Soviet Math. Dokl., 20, 391-393 (1979).
- [4] R. T. Rockafellar: Conjugate duality and optimization. NSF Regional Conference Series, SIAM Publ., no. 16 (1974).
- [5] J. Zowe: Subdifferentiability of convex functions with values in an ordered vector space. Math. Scand., 34, 69-83 (1974).
- [6] ——: A duality theorem for a convex programming problem in order complete vector lattices. J. Math. Anal. Appl., 50, 273-287 (1975).