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50. Toda Lattice Hierarchy. I

By Kimio UEN0*) and Kanehisa TAKASAKI**)

(Communicated by K.Ssaku YOSIDA, M. Z. A., May 12, 1983)

0. Introduction. In this note we shall consider a hierarchy (a
sequence of mutually commuting higher evolutions) for the two dimen-
sional Toda lattice (TL)
( 1 ) afl,u(s) eu() u(-)_ eU( )_

where u(s)=u(s; x, y), a.=a/ax, a,=a/ay and s runs over Z, the
totality of integers. The Toda lattice is, together with the Korteweg-
de Vries (KdV) equation, one of the most classical and important
completely integrable systems. Several varieties o methods have
been developed to reveal its proound mathematical structure.

The present work is inspired by the recent developments in the.
study o the Kadomtsev-Petviashvili (KP) equation and its hierarchies
[1], [2]. Our method enables us to investigate the infinite Toda lattice
in an extremely clear and algebraic ramework.

Let us begin with the 2ollowing observations" In the periodic
case the so called zero curvature representation of (1) is given in [3].
In the general case (1) is represented in the orm
( 2 ) a,B--a=C+ [B, C] =0,
where the symbol [, denotes the commutator, and B, C are the
matrices B=(,_).z+(xU(i),).z, C=(eu()-u(-’,+).z of size
zz.

If the function r(s)=(s x. y) is introduced by
( 3 ) u(s) log [r(s+ 1)/r(s)],
(1) is transformed into the bilinear equation of the Hirota type
( 4 ) DDr(s).r(s)+2r(s+l)r(s--1)=O,
where Dx,D, is one of Hirota’s D-operators which are in general
defined, for a linear differential operator P(), by
( 5 ) P(Dt)f(t). g(t) P(3t,)f(t -- t’)g(t-- t’)It,--0.
By use of the unction r’(s)=e’r(s), (4) is rewritten into the original
orm o Hirota’s bilinearization [4]
( 6 ) DD,r’(s). r’(s) + 2r’(s+ 1)r’(s- 1)- 2r’(sy 0.
The N soliton solution to (6) is presented in [4]. A parametrization
o the r lunction r’(s) in terms of Clifford operators is discussed in [5].

We shall extend these observations to a hierarchy or (1).
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1. Some notations for matrices of size ZXZ. A matrix A of
size ZXZ is expressed in the form

A-- diag [an(8)]An,
nZ

where A denotes the n-th shift matrix A-(,_)ez and diag [a(s)]
the diagonal matrix (a(i)6,)ez. (A)+/- is defined by

(A) diag [an(8)]n, (A)_ diag [a(s)]A.
n>0 n0

We say that A is of finite width if there is a constant m such that
a(s) vanishes for

2. Formulation of the hierarchy. Let x-(x, x,...) and y
--(y, y,...) be independent variables with infinitely many compo-
nents. Let us introduce matrices L, M, Bn, Cn, n=l, 2, ..., of size
ZX Z of the form

L- diag [b(s; x, y)]A, b(s; x, y)-l,
( 7 -<

M= diag [c=(8; x, y)IAn, c_(8; x, y)=/=O,

B=(L’9/ diag [b,(; x, y)]A
(8) _

Cn--(Mn)-( --m=o diag [c=,(s x, y)]A-).
b (]<1) and c (]>-1) serve as the unknown functions in the hier-
archy, bn, and Cn, are expressed as polynomials of be (]<_1),
c (]>- 1) and their shifts in the variable s.

Our Toda lattice hierarchy (TL hierarchy) is, by definition, the
following system of the Lax type

9 ) OL= [B, L], O.L= [C=, L],
aM=[B, M], aM=[C, M], n= l, 2,

Another representation of the TL hierarchy is presented in

Theorem 1. (9) is equivalent to the system of the Zakharov-
Shabat type

(10) B--,Bn- IBm, Bn] --0, wC-v,Cn+ [C, Cn]-0,
B-C+[B, C]=0, m, n= 1, 2,

Notice that (2) is contained in (10).
3. Linearization. The linearization of the TL hierarchy is

achieved by the following linear system for the unknown matrices
W(), W() of size ZZ,

(11)
LW() W()A MW() W()A-

,W=BW, ,W=C,W, W=W(), W(), n= l, 2, .,
where W() and W() are assumed to have the following form,

W() ifV()e(.) W(O)
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) diag [()(s x, y)]A-, o()(s x, y)= 1,

(12) W() , diag [)(s x, y)]A, )(s x, y)0,
=0

(X, A)= XnAn, (y, A-1)= YnA-n.
n=l n=l

To be more precise, we have
Theorem 2. If (9), (10) are satisfied there exist solutions W(),

W() to (11) of the form as (12), and they are unique up to the arbitra-
riness ()() ZY=0f,A-", ()() =0 g,A (f,, g, e C, f0 1,
go,O). Conversely if W(), W() solve (11) for certain matrices L, M
(of the form as (7)) and B,, C, (of finite width), then (8), (9) and (10)
are satisfied.

Notice that the first line of (11) implies that L, M are recovered
from W(=), W() by
(13) L ()A()- i ()A-()-

Let us call the solutions W(), W() to (11) the wave matrices for
the TL hierarchy (as analogues of the wave functions in the classical
inverse scattering theory). They have another characterization"

Theorem 3. Matrices W() and W() of the form as (12) are wave
matrices for the TL hierarchy iff the bilinear equation
(14) W()(x’, y’)W()(x, y)-= W()(x’, y’)W()(x, y)-
is satified for any x, y, x and y’.

The linearization (11) can be rewritten in a more classical form"
Introduce the following formal power series of (cf. (12)).

w()(s x, y 2)=()(s x, y 2)2e(,),
w()(s x, y; 2)=@()(s x, y;2)2’e(,-),

(15) e()(s x, y; )= i)(s x, y)-,
n=0

e()(s x, y 2)= i)(s x, y)2.
=0

The second line of (11) is then equivalent to the linear system (cf. (8))

3w()(s x, y;2)= bn.(s x, y)w()(s+n-m x, y; ),
m=0

n-1(16) w() s ) Cn,(S X, y)w(O)(s +m ),x, y --n x, y
m=0

n=l, 2,
4. Bilinearization. The bilinearization of the TL hierarchy is

achieved by use of the function" Let W(), W() be wave matrices
of the TL hierarchy a.nd introduce (), (0) as in (15).

Theorem 4. The function r(s)=r(s; x, y) is consistently, and
uniquely up to constant multipliers, introduced by the equations

e()(s x, y )=r(s x-(-), y)/r(s x, y),
(17)

e()(s x, y; 2)=r(s+ 1 x, y-(2))/r(s x, y),
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where (1)_(1, +/-2/2 3/3 ...).
It should be noticed that the transformation

r(s)--.r(s)g exp dnx+ ey (d, e e C)

exactly corresponds to the arbitrariness of the wave matrices mentioned
in Theorem 2 with =of]-n:exp (-= d-/n), 7=og]

g0 exp (-:= e/n).
Theorem 5. The r function satisfies (and also is characterized

by) the bilinear equations

p (-2U)Pn(D)e’D>+<v’D>v(S+m+ 1). r(s)
=0

(18) Pn-(-- 2V)Pn(D)e<’>+<’>r(S+m) r(s+ 1), m e Z,
n=O

where D=(D, D/2, D,/3, ...), (u, D)== unD, and p is the
polynomial defined by the generating function e(,)==o P(x)2 [1],
while u=(u, u, ...) and v=(v, v, ...) are indeterminate variables.

(18) is understood to be a generating functional expression of
infinitely many bilinear equations of the Hirota type. They contain
(4) as a special one, and also the bilinear equations for the KP hier-
archy [2] which imply that r(s; x, y) is, regarded as a function of x or
y separately, a r function for the KP hierarchy.

(18) can be transformed into bilinear equations or the unctio.n
r’(s x, y)=exp (:= nxy)r(s x, y) which consequently solves (6).
r’(s) is effectively used in discussing some classes of special solutions.

A parametrization of the r functions in terms of the vacuum ex-
pectation values for Clifford operators is obtained as ollows" Let
r,(xo), x() (l+l=O) be the vacuum expectation value introduced in

[2, III], which was used to parametrize the r unctioas or the two
component KP hierarchy.

Theorem 6. Suppose r,_(x), x())0 for any s e Z. Then
(19) r(s;x, y)= (-1)-)nr,_(x, y)
presents a r function for the TL hierarchy.
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