46. A Generalization of Gauss' Theorem on Arithmetic-Geometric Means

By Takashi Ono
Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi Iyanaga, m. J. a., April 12, 1983)
§ 1. Introduction and methods. With each continuous map f : $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ we associate an entire function $f^{*}(z)$ given by

$$
\left.f^{\sharp}(z)=\int_{S_{n-1}} e^{2 N(f(x))} d \omega_{n-1} \cdot *\right)
$$

We shall assume throughout that

$$
\begin{equation*}
f(x) \neq 0 \quad \text { for all } x \in S^{n-1}, \tag{1.1}
\end{equation*}
$$ hence $N(f(x))>0$ on S^{n-1}. When it is so, the integral

$$
\begin{equation*}
\Gamma(f ; s)=\int_{0}^{\infty} t^{s-1} f^{*}(-t) d t \tag{1.2}
\end{equation*}
$$

represents a holomorphic function for $\sigma=\operatorname{Re} s>0$. We have

$$
\begin{equation*}
\Gamma(f ; s)=\Gamma(s) K(f ; s) \tag{1.3}
\end{equation*}
$$

where $\Gamma(s)$ is the usual gamma function and

$$
\begin{equation*}
K(f ; s)=\int_{s^{n-1}} N(f(x))^{-s} d \omega_{n-1} . \tag{1.4}
\end{equation*}
$$

By (1.1), $K(f ; s)$ is entire and (1.3) yields the meromorphic continuation of $\Gamma(f ; s)$ onto C.

When $n=m=2, f(x)=\left(a x_{1}, b x_{2}\right), 0<a \leqq b$ and $s=1 / 2$, our $K(f ; s)$ becomes the complete elliptic integral:

$$
K\left(f ; \frac{1}{2}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}} .
$$

Gauss proved, by means of quadratic transformations of theta series,

$$
\begin{equation*}
K\left(f ; \frac{1}{2}\right)=K\left(f_{1} ; \frac{1}{2}\right), \quad f_{1}(x)=\left(a_{1} x_{1}, b_{1} x_{2}\right) \tag{G}
\end{equation*}
$$

where $\left.a_{1}=\sqrt{a b}, b_{1}=(a+b) / 2 . * *\right) \quad$ The repeated application of (G) yields immediately the relation $K(f ; 1 / 2)=M(a, b)^{-1}$ where $M(a, b)$ means the arithmetic-geometric of a, b.

In this paper, we shall generalize (G) for our $K(f ; s)$ defined by (1.4) when $n=m=2 p, p>\sigma=\operatorname{Re} s>(p-1) / 2$ and $f(x)=\left(a x_{1}, \cdots, a x_{p}\right.$, $b x_{p+1}, \cdots, b x_{2 p}$). The proof depends on the fact that, under the assumptions, $K(f ; s)$ can be expressed as a hypergeometric series via

[^0]Gegenbauer polynomials. The quadratic transformation of hypergeometric series takes the place of that of theta series in Gauss' case.

Back to the general situation, the Taylor expansion at 0 of the entire function $f^{*}(z)$ is given by

$$
\begin{equation*}
f^{\#}(z)=\sum_{k=0}^{\infty} K(f ;-k) \frac{z^{k}}{k!} . \tag{1.5}
\end{equation*}
$$

Therefore, by (1.2), (1.3), (1.5), we have

$$
\begin{equation*}
\Gamma(f ; s)=\Gamma(s) K(f ; s)=\int_{0}^{\infty} t^{s-1} d t \sum_{k=0}^{\infty} K(f ;-k) \frac{(-t)^{k}}{k!} .^{*)} \tag{1.6}
\end{equation*}
$$

§2. Linear maps. When $f: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ is a linear map satisfying (1.1), calling $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ the arbitrarily ordered set of eigenvalues of the quadratic form $N(f(x))$, we have

$$
K(f ;-k)=\frac{b_{k}(2 ; \lambda)}{b_{k}\left(2 ; 1_{n}\right)}, \quad 1_{n}=(1, \cdots, 1) \in R^{n}
$$

where the numbers $b_{k}(2 ; \lambda)$ are defined by the generating relation

$$
\begin{equation*}
\left.\sum_{k=0}^{\infty} b_{k}(2 ; \lambda) t^{k}=\prod_{i=1}^{n}\left(1-4 \lambda_{i} t\right)^{-1 / 2} . * *\right) \tag{2.1}
\end{equation*}
$$

In particular, we have

$$
b_{k}\left(2 ; 1_{n}\right)=\frac{4^{k}(n / 2, k)}{k!} \cdot{ }^{* * *)}
$$

Therefore, (1.6) becomes

$$
\begin{equation*}
\Gamma(f ; s)=\int_{0}^{\infty} t^{s-1} d t \sum_{k=0}^{\infty} \frac{b_{k}(2 ; \lambda)}{(n / 2, k)}\left(\frac{-t}{4}\right)^{k} \tag{2.2}
\end{equation*}
$$

§3. Certain diagonal maps. Assume now that $n=m=2 p$ and consider the following diagonal map

$$
f(x)=\left(a x_{1}, \cdots, a x_{p}, b x_{p+1}, \cdots, b x_{2 p}\right), \quad 0<a \leqq b .
$$

Clearly this map satisfies (1.1). In view of the generating relation of the Gegenbauer polynomials:

$$
\sum_{k=0}^{\infty} C_{k}^{p / 2}(x) z^{k}=\left(1-2 x z+z^{2}\right)^{-p / 2}
$$

the relation (2.1) with $\lambda_{1}=\cdots=\lambda_{p}=a^{2}, \lambda_{p+1}=\cdots=\lambda_{2 p}=b^{2}$ yields

$$
b_{k}(2 ; \lambda)=C_{k}^{p / 2}\left(\frac{a^{2}+b^{2}}{2 a b}\right)(4 a b)^{k} .
$$

Hence (2.2) becomes

$$
\Gamma(f ; s)=\int_{0}^{\infty} t^{s-1} d t \sum_{k=0}^{\infty} \frac{C_{k}^{p / 2}\left(\left(a^{2}+b^{2}\right) / 2 a b\right)}{(p, k)}(-a b t)^{k}
$$

[^1]\[

$$
\begin{aligned}
& =\int_{0}^{\infty} t^{s-1} e^{-\left(\left(a^{2}+b^{2}\right) / 2\right) t}{ }_{0} F_{1}\left(; \frac{p+1}{2} ;\left(\frac{\left(a^{2}-b^{2}\right) t}{4}\right)^{2}\right) d t^{*)} \\
& =\Gamma(s)\left(\frac{a^{2}+b^{2}}{2}\right)^{-s}{ }_{2} F_{1}\left(\frac{s}{2}, \frac{s+1}{2} ; \frac{p+1}{2} ;\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)^{2}\right) \\
& =\Gamma(s)(a b)^{-s}{ }_{2} F_{1}\left(s, p-s ; \frac{p+1}{2} ;-\frac{(b-a)^{2}}{4 a b}\right)
\end{aligned}
$$
\]

where the last equality is crucial and follows from a quadratic transformation formula of hypergeometric series.**) In other words, we have, by (1.3),

$$
\begin{equation*}
K(f ; s)=(a b)^{-s}{ }_{2} F_{1}\left(s, p-s ; \frac{p+1}{2} ;-\frac{(b-a)^{2}}{4 a b}\right) . \tag{3.1}
\end{equation*}
$$

In order to use the integral representation of hypergeometric series, assume that $p>\sigma>(p-1) / 2, \sigma=\operatorname{Re} s$. Then, (3.1) becomes

$$
\begin{align*}
K(f ; s)= & (a b)^{-s} \frac{\Gamma((p+1) / 2)}{\Gamma(p-s) \Gamma(s-(p-1) / 2)} \tag{3.2}\\
& \times \int_{0}^{1} t^{p-s-1}(1-t)^{s-(p-1) / 2-1}\left(1+\frac{(b-a)^{2}}{4 a b} t\right)^{-s} d t .
\end{align*}
$$

If we put $t=\sin ^{2} \theta$, then (3.2) becomes

$$
\begin{aligned}
K(f ; s)= & \frac{2 \Gamma((p+1) / 2)}{\Gamma(p-s) \Gamma(s-(p-1) / 2)} \\
& \times \int_{0}^{\pi / 2}(\sin \theta)^{2 p-2 s-1}(\cos \theta)^{2 s-p}\left(a b+\frac{(b-a)^{2}}{4} \sin ^{2} \theta\right)^{-s} d \theta .
\end{aligned}
$$

Summarizing, we obtain
Theorem. Let $0<a \leqq b$ and $a_{1}=\sqrt{a b}, b_{1}=(a+b) / 2$. Assume that $p>\sigma>(p-1) / 2, \sigma=\operatorname{Re} s$. Then, we have

$$
\begin{aligned}
\int_{S_{2 p-1}} & \frac{d \omega_{2 p-1}}{\left(a^{2}\left(x_{1}^{2}+\cdots+x_{p}^{2}\right)+b^{2}\left(x_{p+1}^{2}+\cdots+x_{2 p}^{2}\right)\right)^{s}} \\
& =\frac{2 \Gamma((p+1) / 2)}{\Gamma(p-s) \Gamma(s-(p-1) / 2)} \int_{0}^{\pi / 2} \frac{(\sin \theta)^{2 p-2 s-1}(\cos \theta)^{2 s-p}}{\left(a_{1}^{2} \cos ^{2} \theta+b_{1}^{2} \sin ^{2} \theta\right)^{s}} d \theta .
\end{aligned}
$$

References

[1] C. F. Gauss: Werke. vol. III, Göttingen (1876).
[2] G. H. Hardy: Ramanujan. Cambridge Univ. Press (1940).
[3] W. Magnus, F. Oberhettinger, and R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd ed., Springer-Verlag, New York (1966).

[^2][4] T. Ono: On a generalization of Laplace integrals (to appear in Nagoya Math. J.).
[5] -: On deformations of Hopf maps and hypergeometric series (manuscript).
[6] E. D. Rainville: Special Functions. Macmillan, New York (1960).
[7] T. Takagi: Kinsei Sûgakushidan (in Japanese; Topics from the History of Mathematics of the 19th Century). Kawade, Tokyo (1943).
[8] J. Tannery et J. Molk: Eléments de la Théorie des Fonctions Elliptiques. vol. 4, Gauthiers-Villars, Paris (1896).

[^0]: *) We denote by $\langle x, y\rangle$ the standard inner product in \boldsymbol{R}^{n}. We put $N x=\langle x, x\rangle$. The unit sphere is $S^{n-1}=\left\{x \in \boldsymbol{R}^{n} ; N x=1\right\}$. We denote by $d \omega_{n-1}$ the volume element of S^{n-1} such that the volume of S^{n-1} is 1 .
 **) See [1] p. 352. See also [7] § 9 and [8] p. 269.

[^1]: *) This shows that the values of $K(f ; s)$ for $\sigma>0$ are determined by its values at 0 and negative integers $-k$. Compare Ramanujan's formula (B) on p. 186 of [2]. In [4], [5] we wrote $N_{k}(f)$ for $K(f,-k)$.
 **) See § 1 of [4].
 ***) $\quad(a, k)=\left\{\begin{array}{ll}a(a+1) \cdots(a+k-1), & k \geqq 1 \\ 1, & k=0\end{array}, \quad a \in C, k \in Z\right.$.

[^2]: ${ }^{*}$) This follows from the formula (7) on p. 278 of [6].
 **) By this we mean the formula
 (*) $\quad x^{-2 \alpha}{ }_{2} F_{1}\left(\alpha, \alpha+1 / 2 ; \gamma ;\left(x^{2}-1\right) / x^{2}\right)={ }_{2} F_{1}(2 \alpha, 2 \gamma-2 \alpha-1 ; \gamma ;(1-x) / 2)$.
 The last equality is the case $\alpha=s / 2, \gamma=(p+1) / 2, x=\left(a^{2}+b^{2}\right) / 2 a b$. The formula $(*)$ is the same as the one on line 3 from the bottom of p .50 of [3] via the variable change $z=\left(x^{2}-1\right) / x^{2}$.

