43. Pluricanonical Mappings of Canonically Polarized Varieties

By Kazuhisa Maehara
Tokyo Institute of Polytechnics
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1983)

In this note, we shall prove the following result.
Theorem. Let V be a canonically polarized variety of dimension n over C. Then there exists an integer N which depends only on n such that the m-th canonical mappings Φ_{m} of V are birational for all $m \geqq N$.

Here, V is said to be canonically polarized, if it is non-singular, complete and if the canonical divisor $K(V)$ is ample.

To prove this, we need the following lemmas.
Lemma 1 (Matsusaka). Let V be a canonically polarized variety of dimension n and let γ be $K(V)^{(n)}$. If $P_{m}(V) \geqq r m^{n-1}+n$, then the m-th canonical mapping Φ_{m} is generically finite.

Lemma 2 (Wilson). Let V be a non-singular variety of dimension n. If there exists m such that the m-th canonical mapping Φ_{m} is generically finite and $P_{m}(V) \geqq n+2$ then $\Phi_{n m+1}$ is birational.

Lemma 3. Let V be a complete non-singular variety of dimension n over a field of characteristic zero. Assume that the m_{b}-th canonical mapping is birational. Then the m-th canonical mapping is birational for all $m \geqq \operatorname{Max}\left\{1, n m_{b}\left(m_{b}-1\right)\right\}$.

Proof. Put $W_{m}=\Phi_{m}(V)$. Clearly, $\operatorname{Rat}\left(W_{k m_{b}}\right)=\operatorname{Rat}\left(W_{m_{b}}\right)=\operatorname{Rat}(V)$ for all integers $k \geqq 1$. By Wilson's Lemma $\operatorname{Rat}\left(W_{n m_{b}+1}\right)=\operatorname{Rat}(V)$. It suffices to show that we can find integers $\alpha, \beta \geqq 0$ such that m $=\alpha\left(n m_{b}+1\right)+\beta m_{b}$. In fact, we can find integers $q \geqq 1, n m_{b}\left(m_{b}-1\right)>r$ $\geqq 0$ such that $m=q n m_{b}\left(m_{b}-1\right)+r$. Also, $r=s m_{b}+\alpha$ for $s \geqq 0, m_{b}>\alpha$ $\geqq 0$. Hence $m-\alpha\left(n m_{b}+1\right)=\beta m_{b}$, where $\beta=n\left(q\left(m_{b}-1\right)-\alpha\right)+s$. Note that $\beta \geqq 0$.

Proof of Theorem. Since $K(V)$ is ample, it follows that $P_{m}(V)$ $=\chi(V, \mathcal{O}(m K))=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H^{i}(V, \mathcal{O}(m K))$ for $m \geqq 2$. Note that the leading coefficient of polynomial $\chi(V, \mathcal{O}(m K)$) is equal to γ / n ! Moreover if $P_{k}(V)>\gamma k^{n-1}+n-1$ (Matsusaka inequality) for one of value k such that $2 \leqq k \leqq n+2$, then we can find such a number N that all the m-th canonical mappings are birational for all $m \geqq N$, by virtue of Lemmas 1, 2 and 3.

Case 1. Assume $\gamma \leqq n-1$. If $P_{m}(V)>(n-1)\left(m^{n-1}+1\right)$ for one value m such that $2 \leqq m \leqq n+2$, then Matsusaka inequality holds. Hence
we assume that $P_{m}(V) \leqq(n-1)\left(m^{n-1}+1\right)$ for all $2 \leqq m \leqq n+2$. Then there are at most a finite number of such polynomials in the form $P_{m}(V)$. Thus we can find a number l dependent on $\operatorname{dim} V$ only such that Matsusaka inequality holds for all $m>l$.

Case 2. $r>n-1$. We denote m-genera $P_{m}(V)$ by $P(m)$ and assume $P(m)<\gamma\left(m^{n-1}+1\right)$ for all $m \in[2, n+2]$. If not, Matsusaka inequality holds for one value m such that $2 \leqq m \leqq n+2$. Thus we shall show that there exists a number l dependent only on n such that $P(m)>\gamma m^{n-1}$ $+n-1$ for all $m \geqq l$, under the assumption. We construct Lagrangean interpolation function g of degree n with the same leading coefficient as $P(m)$ such that the polynomial equation $P(m)-g(m)=0$ has $n-2$ roots $<n$, and a root $>n$ and that $P(m)>g(m)$ for all $m \geqq n+2$. Moreover $h(m):=g(m) / \gamma$ is a polynomial in m whose coefficients depend only on n. Thus, $g(m)-\gamma\left(m^{n-1}+1\right)=0$ is equivalent to $h(m)-\left(m^{n-1}+1\right)=0$. Then we shall show that there exists a number l dependent only on n such that Matsusaka inequality holds for all $m \geqq l$. We put $g(i)$ $=\gamma\left(i^{n-1}+1\right)$ when $i \equiv n+2 \bmod 2$ and $i \neq n+2$ for all i such that $2 \leqq i$ $\leqq n+2$. Further, we put $g(i)=0$ if $i \equiv n+1 \bmod 2$, and $g(n+2)=\alpha \gamma$ for $2 \leqq i \leqq n+2$. Here, α is determined by the following equation

$$
\sum_{i=2}^{n+1} g(i) /(i-2)(i-3) \cdots(i \wedge i) \cdots(i-n-2)+\alpha \gamma / n!=\gamma / n!.
$$

Note that α is a function of n. We claim that $P(m)>g(m)$ for all m $\geqq n+2$. Put $Q(m)=g(m)-P(m)$. Consider each interval $(i-1, i+1)$ for $i \equiv n+1 \bmod 2$, contained in $[2, n+1]$. Then $Q(i-1)>0, Q(i+1)>0$ and $Q(i)=-P(i) \leqq 0$ by definition. Hence $Q(m)=0$ has at least two roots or a double root in the open interval ($i-1, i+1$). Moreover, it has at least one root in ($i-1, i]$ and also another in $[i, i+1$).

Now, divide into two cases.
(a) $3 \equiv n+1 \bmod 2$. We have $(n-2) / 2$ intervals in the form $(i-1, i+1)$; more precisely they are $(2,4),(4,6), \cdots,(n-2, n)$. Hence $Q(m)=0$ has $2(n-2) / 2+1(=n-1)$ roots in $(2, n+1]$.
(b) $2 \equiv n+1 \bmod 2$. We have $(n-3) / 2$ intervals in the form $(i-1, i+1)$; these are $(3,5),(5,7), \cdots,(n-2, n)$. Thus $Q(m)=0$ has at least $1+2(n-3) / 2+1(=n-1)$ roots in $[2, n+1]$.

In each case, note that Q has degree $n-1$. Let m_{1}, \cdots, m_{n-1} be all roots of $Q(m)=0$. Hence $Q(m)=\alpha\left(m-m_{1}\right) \cdots\left(m-m_{n-1}\right)$. Clearly $m_{1}, \cdots, m_{n-2}<n$ and $m_{n-1}>n$. From $Q(n)>0, a<0$. Thus $Q(m)<0$ for all $m>n+1$, i.e. $P(m)>g(m)$. Hence $P(m)>g(m) \geqq \gamma\left(m^{n-1}+1\right)$ $>\gamma m^{n-1}+n-1$ for all integers $m \geqq \operatorname{Max}$ \{maximal real root of $h(m)$ $\left.-\left(m^{n-1}+1\right)=0, n+2\right\}$. Thus, our proof is complete.

Remark. It is rather easy to verify that $10^{10} n^{10(n+2)}$ satisfies the condition of our Theorem.

References

[1] Matsusaka, T.: Polarized varieties with a given Hilbert polynomial. Amer. J. Math., 94, 1027 (1972).
[2] Wilson, P.: The pluricanonical maps on varieties of general type. Bull. Lond. Math. Soc., 12, 103-107 (1980).

