40. Ergodic Theorems for Semigroups of Operators on a Grothendieck Space

By Sen-Yen SHAW

National Central University, Chung-Li, Taiwan

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1983)

1. Introduction. A theorem of Atalla [1] states that the Cesàro means $\{(1/n)(T+\cdots+T^n)\}$ of a linear contraction T on a Grothendieck space X converge strongly if and only if the weak* closure and the strong closure of the range of T^*-I^* (the dual operator of T-I) coincide. The main purpose of the present paper is to prove an analogue of this theorem for semigroups of linear operators.

Throughout the paper X is a Grothendieck space, i.e., weak* sequential convergence in the dual space X^* is equivalent to weak sequential convergence (cf. [3]), and $\{T(t)\}_{t>0}$ is a locally integrable semigroup of linear operators on X. By this we mean that for each $x \in X$ $T(\cdot)x$ is strongly measurable on $(0, \infty)$ and $\int_0^t ||T(s)x|| ds < \infty$ for every $t \in (0, \infty)$. Then the Bochner integral $\int_0^t T(s)xds$ exists for all $x \in X$. Since $T(\cdot)$ is strongly continuous on $(0, \infty)$ (see [4, p. 616]), this integral is also an improper Riemann integral.

Let S(t) denote the operator on X such that $S(t)x = \int_0^t T(s) x ds$ for all $x \in X$. Then S(t) is a continuous linear operator (see [4, p. 685]). The ergodic theory is concerned with the existence of $\lim_{t\to\infty} t^{-1}S(t)x$. When the limit exists strongly for all x in X, $T(\cdot)$ is said to be strongly ergodic.

First we specify some notations. P will stand for the map which sends x to the strong limit s-lim_{$t\to\infty$} $t^{-1}S(t)x$ whenever the limit exists; its domain D(P) is the set of all x for which the limit exists. Similarly, Q is the map in X^* determined by the weak* limits w*-lim_{$t\to\infty$} $t^{-1}S^*(t)x^*$. Also we shall use the following notations:

$$F = \bigcap_{t>0} N(T(t) - I); \qquad F^* = \bigcap_{t>0} N(T^*(t) - I^*);$$

$$R = \operatorname{span} \left\{ \bigcup_{t>0} R(T(t) - I) \right\}; \qquad R^* = \operatorname{span} \left\{ \bigcup_{t>0} R(T^*(t) - I^*) \right\},$$

where N(L) and R(L) are the null space and the range of an operator L.

We shall prove the following theorems.

Theorem 1. Let $T(\cdot)$ be a locally integrable semigroup of operators on a Grothendieck space X. Assume that (a) $\overline{\lim}_{t\to\infty} t^{-1} ||S(t)|| < \infty$ and

No. 4]

(b) s-lim_{$t\to\infty$} $t^{-1}T(t)S(u)x=0$ for all $x \in X$ and u>0.

Then the following two statements hold:

(i) P is a bounded linear projection in X with R(P) = F, N(P) = s-closure (R) and $D(P) = \{x \in X; \exists t_n \to \infty \ni w\text{-lim}_{n \to \infty} t_n^{-1}S(t_n)x \text{ exists}\}.$

(ii) Q is a bounded linear projection in X* with $R(Q) = F^*$, N(Q) = s-closuse (\mathbb{R}^*) and $D(Q) = \{x^* \in X^*; \exists t_n \to \infty \ni w^*-\lim_{n \to \infty} t_n^{-1}S^*(t_n)x^* exists\}.$

When $T(\cdot)$ is a (C_0) -semigroup with generator A, the sets F, F^{*}, R and \mathbb{R}^* can be replaced by N(A), $N(A^*)$, R(A) and $R(A^*)$, respectively.

Theorem 2. A locally integrable semigroup $T(\cdot)$ of operators on a Grothendieck space is strongly ergodic if and only if the conditions (a) and (b) hold and so does the condition:

(c) w^* -closure $(\mathbb{R}^*) = s$ -closure (\mathbb{R}^*) . Moreover, if $T(\cdot)$ is a (C_0) -semigroup with the infinitesimal generator A, the assertion holds with (c) replaced by

(c') w^* -closure $(R(A^*)) =$ s-closure $(R(A^*))$.

Because the weak topology and the weak* topology in a reflexive space are identical, and because every strongly closed convex set is weakly closed; the above theorem immediately yields the following well-known

Corollary 3 (Masani [5]). Let $T(\cdot)$ be a locally integrable semigroup on a reflexive Banach space. Then $T(\cdot)$ is strongly ergodic if and only if the conditions (a), (b) hold.

2. Proofs of the theorems. Lemma 1 ([5, Lemma 2.3]). The following identities hold:

$$S(u)(T(t)-I) = (T(u)-I)S(t) = S(t)(T(u)-I) = S(t+u)-S(t)-S(u) \qquad (u, t>0).$$

Proof of Theorem 1. The assertion (i) has been proved in Shaw [6] for a general Banach space X. Here we shall prove (ii). First, Q is a bounded operator because of (a) and the estimation :

$$\langle x, Qx^* \rangle = \underline{\lim} |\langle x, t^{-1}S^*(t)x^* \rangle| = \underline{\lim} |\langle t^{-1}S(t)x, x^* \rangle|$$

$$\leq \underline{\lim} t^{-1} \| S(t) \| \| x \| \| x^* \| \qquad (x \in X, x^* \in X^*).$$

Next, we show that D(Q) is strongly closed. Let $\{x_n^*\} \subset D(Q)$ and $x_n^* \to x^*$. Then $\{Qx_n^*\}$ is a Cauchy sequence with the limit $y^* \in X^*$. Fix an arbitrary $x \in X$ and then choose an n such that

 $\|x_{n}^{*}-x^{*}\| < \left(\|x\|\sup_{t>1}\|S(t)\|/t\right)^{-1}(\varepsilon/3) \text{ and } \|Qx_{n}^{*}-y^{*}\| < (\varepsilon/3)\|x\|.$

 $x_n^* \in D(Q)$ implies the existence of a t_0 such that $|\langle x, t^{-1}S^*(t)x_n^* - Qx_n^* \rangle| < \varepsilon/3$ for all $t > t_0$. Thus we have for $t > t_0$

$$\begin{aligned} |\langle x, t^{-1}S^{*}(t)x^{*} - y^{*} \rangle| &\leq |\langle x, t^{-1}S^{*}(t)(x^{*} - x_{n}^{*}) \rangle| \\ &+ |\langle x, t^{-1}S^{*}(t)x_{n}^{*} - Qx_{n}^{*} \rangle| + |\langle x, Qx_{n}^{*} - y^{*} \rangle| \end{aligned}$$

S.-Y. SHAW

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Hence $x^* \in D(Q)$ and $y^* = w^*-\lim_{t\to\infty} t^{-1}S^*(t)x^* = Qx^*$, showing that D(Q) is strongly closed, and so is N(Q).

Since F^* is fixed by every $T^*(t)$, t>0, it is also fixed by $S^*(t)$ and so by Q. Hence $F^* \subset R(Q)$. If $x^* \in D(Q)$, then for all t>0

$$T^{*}(t)Qx^{*} = T^{*}(t)w^{*} - \lim_{u \to \infty} u^{-1}S^{*}(u)x^{*} = w^{*} - \lim_{u \to \infty} u^{-1}T^{*}(t)S^{*}(u)x^{*}$$

= w^{*} - lim u^{-1}(S^{*}(t+u) - S^{*}(t))x^{*} = Qx^{*},

the above lemma being used. This shows that $Q^2 = Q$ and $R(Q) \subset F^*$. Therefore Q is a projection onto $R(Q) = F^*$. Next, Lemma 1 and condition (b) imply that for all $x^* \in X^*$ and u > 0

$$w^{*}-\lim_{t\to\infty} t^{-1}S^{*}(t)(T^{*}(u)-I^{*})x^{*}=w^{*}-\lim_{t\to\infty} t^{-1}(T^{*}(t)-I^{*})S^{*}(u)x^{*}=0.$$

That is, \mathbf{R}^* is contained in N(Q), and so is s-closure (\mathbf{R}^*) .

So far we have proven the relation: $F^* \oplus \text{s-closure } (\mathbf{R}^*) \subset D(Q)$. To complete the proof of (ii), we need to show that if for some sequence $t_n \to \infty$ the limit $x_1^* := \text{w}^*-\lim_{n\to\infty} t_n^{-1} S^*(t_n)x^*$ exists, then $x_1^* \in F^*$ and $x^* - x_1^* \in \text{s-closure } (\mathbf{R}^*)$.

In fact, by (b) and the lemma, we have

$$(T^{*}(t) - I^{*})x_{1}^{*} = w^{*} - \lim_{n \to \infty} t_{n}^{-1}(T^{*}(t) - I^{*})S^{*}(t_{n})x^{*}$$

= w^{*} - lim t_{n}^{-1}(T^{*}(t_{n}) - I^{*})S^{*}(t)x^{*} = 0

for all t>0, i.e., $x_1^* \in F^*$. On the other hand, the vector $S(t_n)x$, as an improper integral, is the strong limit of $(t_n/m) \sum_{k=1}^m T(kt_n/m)x$ as $m \to \infty$. This and the equivalence of w-lim and w*-lim in X^* yields that

$$x^{*} - x_{1}^{*} = -w^{*} - \lim_{n \to \infty} (t_{n}^{-1}S^{*}(t_{n}) - I^{*})x^{*}$$

$$= -w^{*} - \lim_{n \to \infty} w^{*} - \lim_{m \to \infty} m^{-1} \sum_{k=1}^{m} \{T^{*}(kt_{n}/m) - I^{*}\}x^{*}$$

$$= -w - \lim_{n \to \infty} w - \lim_{m \to \infty} m^{-1} \sum_{k=1}^{m} \{T^{*}(kt_{n}/m) - I^{*}\}x^{*}$$

$$\in w\text{-closure} (\mathbf{R}^{*}) = \text{s-closure} (\mathbf{R}^{*}).$$

Lemma 2. Let $T(\cdot)$ be a (C_0) -semigroup of operators on a Banach space X, and let A be its infinitesimal generator. Then

(i) N(A) = F, $N(A^*) = F^*$, s-closure (R(A)) = s-closure (R) and w^* closure $(R(A^*)) = w^*$ -closure (R^*) ;

(ii) s-closure $(R(A^*)) =$ s-closure (R^*) provided that X is a Grothendieck space.

Proof. The first and the third identities in (i) were proved in Lemma 5.2 of [5]. They result from the definition of A and the two equalities: AS(t)x = T(t)x - x ($x \in X$), S(t)Ax = T(t)x - x ($x \in D(A)$). Using these two equalities and the fact that A is closed and densely defined, we can easily deduce that $A^*S^*(t)x^* = T^*(t)x^* - x^*$ for all

 $x^* \in X^*$ and $S^*(t)A^*x^* = T^*(t)x^* - x^*$ for $x^* \in D(A^*)$, from which follow the inclusions: $N(A^*) \subset F^*$ and $R^* \subset R(A^*)$. On the other hand, the inclusions: $F^* \subset N(A^*)$, $R(A^*) \subset w^*$ -closure (R^*) are seen from the fact that $A^*x^* = w^*-\lim_{t\to 0} t^{-1}(T^*(t)-I^*)x^*$ for all x^* in $D(A^*)$ (see [2, p. 48]). Hence the second and the fourth identities in (i) hold.

If X is a Grothendieck space, then for each
$$x^* \in D(A^*)$$

$$A^*x^* = \mathbf{w}^* - \lim_{n \to \infty} n(T^*(1/n) - I^*)x^* = \mathbf{w} - \lim_{n \to \infty} n(T^*(1/n) - I^*)x^*$$

 \in w-closure (\mathbf{R}^*) = s-closure (\mathbf{R}^*) , proving that $R(A^*) \subset$ s-closure (\mathbf{R}^*) . This with $R^* \subset R(A^*)$ leads to

(ii).

Proof of Theorem 2. Suppose $T(\cdot)$ is strongly ergodic, i.e., P is a bounded operator on X. Then (a) and (b) have been proved in Theorem I of [5]. (c) is proved as follows.

It is clear that Q is now equal to P^* . Hence, by the identity R(P) = F, we have

$$N(Q) = N(P^*) = R(P)^{\perp} = F^{\perp} = \left\{ \bigcap_{t>0} N(T(t) - I) \right\}^{\perp}$$
$$= \left\{ \bigcap_{t>0} {}^{\perp} (R(T^*(t) - I^*)) \right\}^{\perp} = ({}^{\perp}R^*)^{\perp} = w^* \text{-closure } (R^*).$$

But we already have N(Q) = s-closure (\mathbb{R}^*). Therefore (c) holds.

Conversely, suppose (a)-(c) hold. From the above we have $F^{\perp} = w^*$ -closure $(\mathbb{R}^*) =$ s-closure (\mathbb{R}^*) , which together with (i) of Theorem 1 gives

$$D(P)^{\perp} = (F \oplus \text{s-closure } (R))^{\perp} = F^{\perp} \cap \left\{ \bigcap_{t \ge 0} (R(T(t) - I))^{\perp} \right\}$$
$$= F^{\perp} \cap \left\{ \bigcap_{t \ge 0} N(T^{*}(t) - I^{*}) \right\} = \text{s-closure } (R^{*}) \cap F^{*},$$

and this set is $\{0\}$ by (ii) of Theorem 1. Since D(P) is closed, it must be the whole space X and $T(\cdot)$ is strongly ergodic.

The equivalence of (c) and (c') follows from Lemma 2.

References

- R. E. Atalla: On the ergodic theory of contractions. Revista Colombiana de Matemáticas, 10, 75-81 (1976).
- [2] P. L. Butzer and H. Berens: Semi-groups of Operators and Approximation. Springer-Verlag, Berlin (1967).
- [3] J. Diestel: Grothendieck spaces and vector measures. Vector and Operator Valued Measures and Applications. Academic Press, New York, pp. 97-108 (1973).
- [4] N. Dunford and J. T. Schwartz: Linear Operators. I: General Theory. Interscience (1958).
- [5] P. Masani: Ergodic theorems for locally integrable semigroups of continuous linear operators on a Banach space. Advances in Math., 21, 202-228 (1976).
- [6] S.-Y. Shaw: Ergodic properties of operator semigroups in general weak topologies. J. Funct. Anal., 49, 152-169 (1982).