37. Invariant Measures on Orbits Associated to a Symmetric Pair^{*)}

By Jiro SEKIGUCHI

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1983)

§1. Introduction. Let \mathfrak{g}_0 be a real simple Lie algebra of noncompact type and let σ be an involution of \mathfrak{g}_0 . Then by setting $\mathfrak{h}_0 = \{X \in \mathfrak{g}_0; \sigma X = X\}$ and $\mathfrak{q}_0 = \{X \in \mathfrak{g}_0; \sigma X = -X\}$, we obtain a direct sum decomposition $\mathfrak{g}_0 = \mathfrak{h}_0 + \mathfrak{q}_0$. We remark that M. Berger [1] gives the classification of such a pair $(\mathfrak{g}_0, \mathfrak{h}_0)$ which we call a symmetric pair in this paper. Let G be the adjoint group of \mathfrak{g}_0 and let H be the analytic subgroup of G corresponding to \mathfrak{h}_0 . Since $[\mathfrak{h}_0, \mathfrak{q}_0] \subseteq \mathfrak{q}_0$, H acts on \mathfrak{q}_0 by the adjoint action. For brevity, we set $h \cdot X = Ad_g(h)X$ for $h \in H$ and $X \in \mathfrak{q}_0$. If $\mathcal{O}(X)$ is the H-orbit of X, then $\mathcal{O}(X)$ is identified with the homogeneous space H/H_X , where $H_X = \{h \in H : h \cdot X = X\}$. We ask whether $\mathcal{O}(X)$ has an H-invariant measure or not. As was pointed out by van Dijk [5], every orbit does not have an H-invariant measure. Now assuming that the orbit $\mathcal{O}(X)$ of an element X of \mathfrak{q}_0 has an Hinvariant measure $d\mu$, we define a functional T by

 $T(f) = \int_{\mathcal{O}(X)} f d\mu$ for any $f \in C_0^{\infty}(\mathfrak{q}_0)$.

Then we next ask whether T defines a Radon measure on q_0 or not. Also, this does not hold in general even if the assumption on the existence of an *H*-invariant measure is satisfied.

In this note, we always assume that the complexification of g_0 is of type A and give a complete answer to the problem on the existence of *H*-invariant measures in §2 and discuss on the possibility of extending the measures to q_0 as *H*-invariant distributions in §3.

§ 2. The existence of H-invariant measures. We use the notation in the introduction. The complexifications of g_0 , \mathfrak{h}_0 , \mathfrak{q}_0 are denoted by g, \mathfrak{h} , q, respectively.

In this note we always assume that g is simple of type A. Then it follows from [1] that (g, h) is isomorphic to one of the pairs ($\mathfrak{Sl}(n, C)$, $\mathfrak{So}(n, C)$), ($\mathfrak{Sl}(2n, C)$, $\mathfrak{Sp}(n, C)$), ($\mathfrak{Sl}(m+n, C)$, $\mathfrak{Sl}(m, C) + \mathfrak{Sl}(n, C) + C$) ($m \ge n \ge 1$).

We take an element X of \mathfrak{q}_0 and denote by $\mathfrak{h}_0(X)$ the Lie algebra of H_X , by $\mathfrak{h}(X)$ the complexification of $\mathfrak{h}_0(X)$. The following proposition is well-known but plays a fundamental role in the subsequent discussion.

^{*)} Supported in part by the Sakkokai foundation.

Proposition 1. For an element X of q_0 , the H-orbit $\mathcal{O}(X)$ has an H-invariant measure if and only if the Lie algebra $\mathfrak{h}(X)$ satisfies the condition

(1) $\operatorname{tr} ad_{\mathfrak{g}(X)}(Z) = 0$ for any $Z \in \mathfrak{g}(X)$.

From Proposition 1, we easily obtain

Theorem 2. Let (g_0, f_0) be a symmetric pair such that (g, f) is isomorphic to $(\mathfrak{Sl}(n, \mathbb{C}), \mathfrak{So}(n, \mathbb{C}))$ or $(\mathfrak{Sl}(2n, \mathbb{C}), \mathfrak{Sp}(n, \mathbb{C}))$ for some integer n. Then the condition (1) in Prop. 1 holds for any element X of \mathfrak{q}_0 . In particular every H-orbit of \mathfrak{q}_0 has an H-invariant measure.

In the rest of this section, we consider such a pair (g_0, \mathfrak{h}_0) that $(g, \mathfrak{h}) = (\mathfrak{Sl}(m+n, \mathbf{C}), \mathfrak{Sl}(m, \mathbf{C}) + \mathfrak{Sl}(n, \mathbf{C}) + \mathbf{C})$ for some integers m, n with $m \ge n \ge 1$. To treat this case, we need some preparations. Let X be a nilpo-

tent matrix of size *n*. If the Jordan's normal form of *X* is
$$\begin{bmatrix} J_{p_1} & & \\ & \ddots & \\ & & J_{p_k} \end{bmatrix}$$
with $p_1 \ge p_2 \ge \cdots \ge p_k \ge 1$, $p_1 + \cdots + p_k = n$. Here $J_p = \begin{bmatrix} 01 & & \\ 01 & & \\ & \ddots & \\ & & \ddots & \\ & & & 1 \\ & & & 0 \end{bmatrix}$ is a

 $p \times p$ matrix. Then we define a partition $\eta(X) = (p_1, \dots, p_k)$ of n associated with X. First we take a nilpotent element X of q_0 .

Lemma 3. Let X be a nilpotent element of q_0 . Then $\mathfrak{h}(X)$ satisfies the condition (1) in Prop. 1 if and only if the partition $\eta(X) = (p_1, \dots, p_k)$ satisfies the condition (2):

(2) there is a number i such that p_j is odd (resp. even) if $j \leq i$ (resp. j > i).

Next we treat an arbitrary element X of q_0 . We consider the Jordan decomposition X = A + N, where A is semisimple and N is nilpotent. Then it follows from [5] that A and N are contained in q_0 . Let \mathfrak{F} be the derived algebra of the centralizer of A in g. Extending σ to g as a complex linear involution, we find that $\sigma(\mathfrak{F}) = \mathfrak{F}$. Noting that \mathfrak{F} is semisimple, we can conclude that there are simple Lie algebras $\mathfrak{F}_{\mathfrak{F}_0}, \mathfrak{F}_{\mathfrak{F}_1}, \dots, \mathfrak{F}_{\mathfrak{F}_p}$ of type A such that $\mathfrak{F} = \mathfrak{F}_0 + \mathfrak{F}_1 + \dots + \mathfrak{F}_{\mathfrak{F}_p}$ is the direct sum decomposition of \mathfrak{F} into simple factors and that $\sigma(\mathfrak{F}_0) = \mathfrak{F}_0, \sigma(\mathfrak{F}_{\mathfrak{F}_{\mathfrak{F}_1}}) = \mathfrak{F}_{\mathfrak{F}_{\mathfrak{F}_2}}$ ($1 \leq i \leq p$). Then it follows that $(\mathfrak{F}_0, \mathfrak{F}_0 \cap \mathfrak{H}) = (\mathfrak{K}(m_1 + n_1, \mathbb{C}), \mathfrak{K}(m_1, \mathbb{C}) + \mathfrak{K}(n_1, \mathbb{C}) + \mathbb{C})$ for some integers $m_1, n_1 (m_1 \geq n_1 \geq 1)$. We decompose $N = N_0 + N_1 + \dots + N_p$ such that N_0 is in $\mathfrak{F}_0 \cap \mathfrak{q}$ and N_i is in $(\mathfrak{F}_{\mathfrak{F}_{\mathfrak{F}_1} + \mathfrak{F}_{\mathfrak{F}_2})$.

Theorem 4. Let X be an arbitrary element of q_0 and use the notation introduced above. Then $\mathcal{O}(X)$ has an H-invariant measure if

and only if $\eta(N_0)$ satisfies the condition (2) in Lemma 3.

§3. An extension of the invariant measures. In this section, we assume that $X \in q_0$ is nilpotent and that $\mathcal{O}(X)$ has an *H*-invariant measure $d\mu$. We examine the possibility of extending $d\mu$ to an *H*-invariant distribution on q_0 .

Let $X_0 \in \mathfrak{q}_0$ be nilpotent and assume that $\mathcal{O}(X_0)$ has an *H*-invariant measure $d\mu$. We take a normal S-triple (A, X_0, Y_0) , that is, (A, X_0, Y_0) is an S-triple and $A \in \mathfrak{h}_0$, X_0 , $Y_0 \in \mathfrak{q}_0$ (cf. [5]). Define $\mathfrak{h}_0(i) = \{Z \in \mathfrak{h}_0; \}$ [A, Z] = iZ, $q_0(i) = \{Z \in q_0; [A, Z] = iZ\}$ for any integer *i*. For later use, we set $\mathfrak{n}_{\mathfrak{b}} = \bigoplus_{i>0} \mathfrak{h}_0(i)$, $\mathfrak{n} = \bigoplus_{i>2} \mathfrak{q}_0(i)$. Then $\mathfrak{p} = \mathfrak{h}_0(0) + \mathfrak{n}_{\mathfrak{b}}$ is a parabolic subalgebra of \mathfrak{h}_0 . Let P denote the parabolic subgroup of H corresponding to p. If M_{x_0} is the centralizer of A in P and if N_P is the unipotent radical of P, then $P = M_{X_0} N_P$ is a Levi decomposition of P. By definition, $\mathfrak{h}_0(0)$ and $\mathfrak{n}_{\mathfrak{h}}$ are the Lie algebras of M_{x_0} and $N_{\scriptscriptstyle P}$, respectively. Since P acts on $\mathfrak{n}_{\mathfrak{h}}$ and \mathfrak{n} , we can define functions $\delta(p)$, $\gamma_1(p)$ and $\gamma_2(p)$ on P by $\delta(p) = |\det(Ad_H(p)|\mathfrak{n}_b)|, \ \gamma_1(p) = |\det(Ad_G(p)|\mathfrak{q}_0(2))|$ and $\gamma_2(p)$ $= |\det (Ad_{\sigma}(p)|\mathfrak{n})|$ for any $p \in P$. We note that $\delta(pn) = \delta(p)$ and $\mathcal{T}_{i}(pn)$ $=\gamma_i(p)$ (i=1,2) for any $p \in P$ and $n \in N_P$. By an argument similar to the proof of [4, Lemma 1], we show that $N_P \cdot X_0 = X_0 + \mathfrak{n}$ and $P \cdot X_0$ $=V+\mathfrak{n}$, where $V=M_{X_0}\cdot X_0$ is an open subset of $\mathfrak{q}_0(2)$. Then the following lemma is proved by direct calculation.

Lemma 5. There are homogeneous polynomials $f_1(X)$, $f_2(X)$ on $q_0(2)$ and positive rational numbers r_1 , r_2 with the condition (3) below:

(3) Define a function $\Phi(X)$ by $\Phi(X) = |f_1(X)|^{r_1}/|f_2(X)|^{r_2}$ on V. Then $\Phi(m \cdot X) = (\delta(m)/\tilde{r}_1(m)\tilde{r}_2(m))\Phi(X)$ for any $m \in M_{X_0}, X \in V$.

Using Lemma 5, we examine whether the *H*-invariant measure $d\mu$ on $\mathcal{O}(X_0)$ is rewritten as an orbital integral on \mathfrak{q}_0 or not. For this purpose, we take a Cartan involution θ of \mathfrak{g}_0 commuting with σ (cf. [1]) and denote by *K* the maximal compact subgroup of *G* corresponding to θ . Then $K_H = K \cap H$ is a maximal compact subgroup of *H*.

Proposition 6. If $F \in C_0^{\infty}(\mathfrak{q}_0)$ satisfies the condition that (Supp F) $\cap \mathcal{O}(X_0)$

is compact, then $\int_{\mathcal{O}(X_0)} Fd\mu$ is convergent and the following equality (4) holds:

 $(4) \quad \int_{\mathcal{O}(X_0)} Fd\mu = \int_{K_H} dk \int_{V+n} F(k(X+Z)) \Phi(X) dX dZ.$

Here dk is a Haar measure on K_{H} and dX, dZ are Euclidean measures on $q_0(2)$, n, respectively.

If $f_2(X)$ is a non-zero constant, it easily follows from Prop. 6 that the right-hand side of the equation (4) is convergent for any $F \in C_0^{\infty}(\mathfrak{q}_0)$ and therefore defines a Radon measure on \mathfrak{q}_0 . But this condition on $f_2(X)$ does not hold in general. Hence in order to extend the measure $d\mu$ to q_0 as an *H*-invariant distribution, we must regularize the function $\Phi(X)$. Let *S* be a distribution on $q_0(2) + \mathfrak{n}$ such that for any $f \in C_0^{\infty}(q_0(2) + \mathfrak{n})$, we have $S(f^m) = \delta(m)S(f)$ ($\forall m \in M_{X_0}$), where $f^m(Z)$ $= f(m^{-1} \cdot Z)$. Such a distribution *S* always exists by regularizing the function $\Phi(X)$ defined on *V* (cf. [3]). We note that *S* is *not* uniquely determined by $\Phi(X)$ in general.

Theorem 7. With the distribution S on $q_0(2) + n$ defined above, we can associate a distribution T on q_0 by $T(f) = S(\bar{f})$ for any $f \in C_0^{\infty}(q_0)$. Here \bar{f} is the function on $q_0(2) + n$ defined by $\bar{f}(X+Z) = \int_{K_H} f(k(X+Z)) dk$. Moreover T is H-invariant and for any H-invariant polynomial P on q_0 , we have PT = P(0)T.

The extended version of the results of this note including their proofs will be published elsewhere.

References

- M. Berger: Les espaces symétriques non compacts. Ann. Sci. Éc. Norm. Sup., 74, 85-177 (1957).
- [2] B. Kostant and S. Rallis: Orbits and representations associated with symmetric spaces. Amer. J. Math., 93, 753-809 (1971).
- [3] T. Oshima and J. Sekiguchi: Eigenspaces of invariant differential operators on an affine symmetric space. Invent. math., 57, 1-81 (1980).
- [4] R. Rao: Orbital integrals in reductive algebraic groups. Ann. of Math., 96, 505-510 (1972).
- [5] G. van Dijk: Orbits on real affine symmetric spaces (preprint).

No. 4]