36. Asymptotic Expansions of Solutions of Fuchsian Hyperbolic Partial Differential Equations

By Hidetoshi Tahara
Department of Mathematics, Sophia University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1983)

In this paper, we deal with a Fuchsian hyperbolic partial differential equation (in Tahara [2], [4]) and determine concrete asymptotic expansions (as $t \rightarrow+0$) of solutions in $C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$.

1. Equation. Let us consider a linear partial differential equation of the form
(E)

$$
\left(t \partial_{t}\right)^{m} u+\sum_{\substack{j+\alpha, \alpha \leq m \\ j<m}} a_{j, \alpha}(t, x)\left(t^{\kappa} \partial_{x}\right)^{\alpha}\left(t \partial_{t}\right)^{j} u=0,
$$

where $(t, x)=\left(t, x_{1}, \cdots, x_{n}\right) \in[0, T) \times \boldsymbol{R}^{n}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right),|\alpha|=\alpha_{1}+\cdots$ $+\alpha_{n}, a_{j, \alpha}(t, x) \in C^{\infty}\left([0, T) \times \boldsymbol{R}^{n}\right), \kappa=\left(\kappa_{1}, \cdots, \kappa_{n}\right), \kappa_{i} \in N=\{1,2, \cdots\}$ and

$$
\left(t^{k} \partial_{x}\right)^{\alpha}=\left(t^{n_{1}} \partial_{x_{1}}\right)^{\alpha_{1}} \cdots\left(t^{k_{n}} \partial_{x_{n}}\right)^{\alpha_{n}}
$$

For hyperbolicity, we assume the following condition; all the roots $\lambda_{i}(t, x, \xi)(1 \leqq i \leqq m)$ of the equation (in $\left.\lambda\right)$

$$
\lambda^{m}+\sum_{\substack{j+\alpha \mid=m \\ j<m}} a_{j, \alpha}(t, x) \xi^{\alpha} \lambda^{j}=0
$$

are real valued, simple and bounded on $\left\{(t, x, \xi) \in[0, T) \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}\right.$; $|\xi|=1\}$. Then, (E) is one of the most fundamental models of Fuchsian hyperbolic equations discussed in Tahara [2], [4]. In [4], we have solved (E) in $C^{\infty}\left([0, T) \times \boldsymbol{R}^{n}\right)$ as characteristic Cauchy problems. But, here, we want to discuss (E) in $C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$ from the view point of asymptotic analysis (as $t \rightarrow+0$).
2. Result. Let $\rho_{1}(x), \cdots, \rho_{m}(x)$ be the roots of the equation (in ρ)

$$
\rho^{m}+\sum_{j<m} a_{j,(0, \ldots, 0)}(0, x) \rho^{j}=0
$$

Then, we can obtain the following result for (E) in $C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$.
Theorem. Assume that $\rho_{i}(x)-\rho_{j}(x) \notin Z$ holds for any $x \in \boldsymbol{R}^{n}$ and $1 \leqq i \neq j \leqq m$. Then, we have the following results.
(1) Any solution $u(=u(t, x)) \in C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$ of (E) can be expanded asymptotically into the form
(*) $\quad u(t, x) \sim \sum_{i=1}^{m}\left\{\varphi_{i}(x) t^{\rho i(x)}+\sum_{k=1}^{\infty} \sum_{n=0}^{m k} \varphi_{k, h}^{(i)}(x) t^{\rho_{i}(x)+k}(\log t)^{m k-h}\right\}$
(as $t \rightarrow+0$) for some $\varphi_{i}(x), \varphi_{k, h}^{(i)}(x) \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$. Further, such coefficients $\varphi_{i}(x), \varphi_{k, h}^{(i)}(x)$ are uniquely determined by $u(t, x)$.
(2) Conversely, for any $\varphi_{1}(x), \cdots, \varphi_{m}(x) \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ we can find a solution $u(=u(t, x)) \in C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$ of (E) and coefficients $\varphi_{k, h}^{(i)}(x)$ $\in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ so that the asymptotic relation in (1) holds. Further, such
a solution $u(t, x)$ and coefficients $\varphi_{k, h}^{(i)}(x)$ are uniquely determined by $\varphi_{1}(x), \cdots, \varphi_{m}(x)$.

Here, the meaning of the asymptotic relation (*) in (1) is as follows. Denote by $R_{N}(t, x)$ the N-th remainder term, that is,

$$
R_{N}(t, x)=u(t, x)-\sum_{i=1}^{m}\left\{\varphi_{i}(x) t^{\rho_{i}(x)}+\sum_{k=1}^{N} \sum_{n=0}^{m k} \varphi_{k, h}^{(i)}(x) t^{\rho_{i}(x)+k}(\log t)^{m k-h}\right\} .
$$

Then, the asymptotic relation (*) above is defined by the following; for any $s>0$ and any compact subset K of \boldsymbol{R}^{n}, there is an $N_{0} \in N$ such that for any $N \geqq N_{0}$

$$
\sup _{x \in K}\left|\partial_{t}^{l} \partial_{x}^{\alpha} R_{N}(t, x)\right|=o\left(t^{s-l}\right)
$$

(as $t \rightarrow+0$) holds for any l and α.
Remark. In the case of analytic category, analogous results are already obtained in Tahara [3] for general Fuchsian type partial differential equations. Note that we can easily obtain the asymptotic expansion of the above form by developing the fundamental solutions (constructed in [3]) into formal series. See also Chi Min-You [1].
3. Example. Let us consider the Euler-Poisson-Darboux equation (see Weinstein [5]) of the form

$$
\partial_{t}^{2} u-\Delta u+\frac{\alpha}{t} \partial_{t} u=0
$$

where $(t, x) \in[0, T) \times \boldsymbol{R}^{n}, \quad \Delta=\partial_{x_{1}}^{2}+\cdots+\partial_{x_{n}}^{2}$ and $\alpha \in \boldsymbol{C}$. Assume that $\alpha \neq \pm 1, \pm 3, \pm 5, \cdots$. Then, any solution $u \in C^{\infty}\left((0, T) \times \boldsymbol{R}^{n}\right)$ is characterized by the following asymptotic expansion

$$
\begin{aligned}
u(t, x) & \sim \sum_{k=0}^{\infty} \frac{\Gamma((1+\alpha) / 2) \Delta^{k} \varphi_{1}(x)}{2^{2 k} \Gamma(k+1) \Gamma(k+(1+\alpha) / 2)} t^{2 k} \\
& +\sum_{k=0}^{\infty} \frac{\Gamma((3-\alpha) / 2) \Delta^{k} \varphi_{2}(x)}{2^{2 k} \Gamma(k+1) \Gamma(k+(3-\alpha) / 2)} t^{2 k+1-\alpha}
\end{aligned}
$$

(as $t \rightarrow+0$), where $\varphi_{1}(x), \varphi_{2}(x) \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$.
Details and proofs will be published elsewhere.

References

[1] Chi, Min-You: On Fuchsian type partial differential equations. Sci. Rep. Wuhan Univ., 4, 1-6 (1977) (in Chinese).
[2] Tahara, H.: Cauchy problems for Fuchsian hyperbolic partial differential equations. Proc. Japan Acad., 54A, 92-96 (1978).
[3] -: Fuchsian type equations and Fuchsian hyperbolic equations. Japan. J. Math., New Ser. 5, 245-347 (1979).
[4] -: Singular hyperbolic systems, III. On the Cauchy problem for Fuchsian hyperbolic partial differential equations. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, 465-507 (1980).
[5] Weinstein, A.: The singular solutions and the Cauchy problem for generalized Tricomi equations. Comm. Pure Appl. Math., 7, 105-116 (1954).

