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In this paper, we deal with a Fuchsian hyperbolic partial differ-
ential equation (in Tahara [2], [4]) and determine concrete asymptotic
expansions (as t—+0) of solutions in C~((0, T) X R™).

1. Equation. Let us consider a linear partial differential equa-
tion of the form

E) (td,)"u+ ZS a; .(t, x) (td,)(t3,)'u=0,
J+lalsm
j<m
where (t, x):(t, Ly = vy xn) € [0’ T)XRny oc=(oq, Y an)’ {Cd:“l“l" M

+at,, @&, ) € C=([0, T)XR"), k=(ky, + -+, £,), £, € N={1,2, ---} and
(tlcaz)a — (tnaxl)al e (tlmaxn)an‘
For hyperbolicity, we assume the following condition; all the roots
2,(t, x, &) (1<i<m) of the equation (in 2)
20 eyt 0 =

j+a| m

are real valued, simple and bounded on {(t,x,8¢€l0, T)}XR"XR";
|€]=1}. Then, (E) is one of the most fundamental models of Fuchsian
hyperbolic equations discussed in Tahara [2], [4]. In [4], we have
solved (E) in C=([0, T) X R™) as characteristic Cauchy problems. But,
here, we want to discuss (E) in C=((0, T) X R") from the view point of
asymptotic analysis (as t—+0).

2. Result. Letp(x), - -, p,() be the roots of the equation (in p)

p"‘-i—j[:_;na,' 0,00, )p’=0.

Then, we can obtain the following result for (E) in C~((0, T) X R").

Theorem. Assume that p(x)—p;(x) ¢ Z holds for any x € R" and
1<i#j<m. Then, we have the following results.

(1) Any solution w(=u(t, x)) € C=((0, T)XR™) of (E) can be ex-
panded asymptotically into the form

(%) u(t, ) ~fnj {soz(x)t“"‘)+i]1 g (@)t @ ¥ (log t)’”""‘}

(as t—+0) for some ¢,(x), i\ (x) € C*(R™). Further, such coefficients
o), e (x) are uniquely determined by u(t, x).

(2) Conwversely, for any ¢,(), - -, p.(x) € C*(R") we can find a
solution u(=u(t, x)) € C*((0, T)XR") of (E) and coefficients ¢ (x)
e C=(R™) so that the asymptotic relation in (1) holds. Further, such
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a solution u(t, x) and coefficients ¢’ (x) are uniquely determined by
0(®), -+ -, pn(®).

Here, the meaning of the asymptotic relation (x) in Q) is as
follows. Denote by R,(¢, ) the N-th remainder term, that is,

m N m
Rﬂtw=Mtw—Z&M@WW+ZZ%%WWWWW%@””}
=1 k=1h=0

Then, the asymptotic relation (x) above is defined by the following;
for any s>0 and any compact subset K of R", there is an N, e N such
that for any N>=N,

sup [010: R y(, @) |=0(t*~")

(as t——+0) holds for any [ and «.

Remark. In the case of analytic category, analogous results are
already obtained in Tahara [3] for general Fuchsian type partial
differential equations. Note that we can easily obtain the asymptotic
expansion of the above form by developing the fundamental solutions
(constructed in [8]) into formal series. See also Chi Min-You [1].

3. Example. Let us consider the Euler-Poisson-Darboux equa-
tion (see Weinstein [5]) of the form

aiu—Au—{—%atu:O,

where (¢, 2)el0, T)XR", 4=+ ---+d%, and aeC. Assume that
a#=+1, +3, +5, ---. Then, any solution e C~((0, T) X R") is char-
acterized by the following asymptotic expansion
it o)~ 5 TO+/ DM@
k=0 2% (k+1)I'(k+A+a)/2)
+ i: ]_'((3—0()/2)41";02(.76) fRe+1-a

k=0 2%"(k+1DI'(k+B—w)/2)

(as t—+0), where ¢,(z), ¢,(x) € C*(R").
Details and proofs will be published elsewhere.
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