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By Keisuke UCttIKOSHI
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(Communicated by K.Ssaku YOSIDA, M. J. A., April 12, 1983)

We denote by (x,y) the variables of C/, where x eC and
y=(y, y’)e CC-, and by (, ]) the dual variables of (x, y). We
consider partial differential operators written in the following form:

P(x, y, /x, /y)= . x(’’)a(x, y)(/3x)(/y).
Here (i, a), i+[al<2, are integers defined by

{i [] i+[[=2
(i, )= i=0, Il=l

otherwise,
where q and q’ are integers which satisfy 0< q’< q-2. Furthermore,
a.(x, y), i+]al<2, are holomorphic at the origin, and a.0=l.

Remark. If q’=q-1, the above operators are said to satisfy
Levi condition. Several authors considered singular Cauchy problems
for such operators (see Nakane [1], Takasaki [2], and Urabe [4]).
Perhaps we can also treat this case, but this requires some modifica-
tions which are not trivial. Thus we consider only the case of
qt q--2.

We assume that the equation, xa(x, y)=O
i+lal=2

has two roots --xq(x, y, ), i=l, 2, where (x, y, ), i-l, 2, are
holomorphic at x-O, y--O, ]-(1, 0, ., 0) and homogeneous of degree
1 in ]. Furthermore we assume that

(x, y, ) :(x, y, )
at x=0, y=0, ]=(1, 0, ..., 0).

Our purpose is to solve the following singular Cauchy problems:

[Pu(x, y)=O( 1
[(3/x)u(O, y)--/t(y) i=0, 1.

Here e,(y), i=O, 1, are multivalued holomorphie unctions defined on
(y e C ]yIR, ]--1, 2, ..., n, y#O) with some RO, and satisfy

I?(y) C exp{C[y]-(q--q’)/(q+x)}
with some CO there.

Let us define (x, y), i=1, 2, by
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(/x)(x, y)-x(x, y, g(x, y))=0
(0, y)=y,

and (x, y’), i=1, 2, by
(x, y)=0 if and only if y=(x, y’).

Then we have the following

Theorem. Let rO be small enough, and e R be arbitrary.
We define r, r,O r,O

,o’ ((x, y) e CC ]x]r, ]Y]<r, ]=l, 2, n

arg(--(, ’))--01<+, i=l,

" {(, V) e CXC; ll<r, IVl<r, ]=1, ,r,O

[arg(g-(, ’))-0-1<+, i=l,

The there ezit niqe oltion (, ) o (1)

ith ome C>0 o .o.
Remark. Let us fix (z, ’)e CX C- arbitrarily. Let us define

0 by 0=arg ((z, ’)-(, ’))+/. hen it is easy see tha ,o
is a domain in the universal eovering saee of ={(z,
[zl<r, []<, =1, , ..., , (, )0, i=1, 2} which rojeets to the
whole base saee . However, we eannot eonstrue the solution on
an arbitrary domain in the universal covering space of .

Remark. Nurhermore, we can give concrete representation
of the solution. Le 0 e R and e Z be arbitrary. We define 0o by

00=-arg{[2(z, g, )-2(z, , )]o,=o,,o,...,o}.
We define V,o,, i=1, , by

,o, (z, ) e CXC z<, ll<r, =1, 2,

(q+l) arg z-(Oo+l+O)- <,
larg(g-(z, ’))-0]<+r

hen there exist holomrphie functions ,(z, g), i=1, 2, defined on

V which satisfy,0,

Iv,(x, y)lC exp{Cly-(x, Y’)]-(--’)/(+)}
with some C>0 on V,, and

(2) v,(x, y)+v,(x, y)=u(x, y)
the solution u(x y) ison V V Since Uez(V,, V ,) =w,r,O, r,O,l" r,O

depending on arg x. We candecomposed into the form (2) on Wr,o,
give a cncrete representation of vr,o,(x, y) using some class of oper-
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ators. Analogous results hold also on Wr,o.
in Uchikoshi [3].

The details will be given
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