35. Singular Cauchy Problems for Second Order Partial Differential Operators with Non-Involutory Characteristics

By Keisuke UCHIKOSHI

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1983)

We denote by (x, y) the variables of C^{n+1} , where $x \in C$ and $y = (y_1, y') \in C \times C^{n-1}$, and by (ξ, η) the dual variables of (x, y). We consider partial differential operators written in the following form:

 $P(x, y, \partial/\partial x, \partial/\partial y) = \sum_{i+|\alpha| \leq 2} x^{\epsilon(i,\alpha)} a_{i\alpha}(x, y) (\partial/\partial x)^i (\partial/\partial y)^{\alpha}.$

Here $\kappa(i, \alpha)$, $i+|\alpha| \leq 2$, are integers defined by

$$\kappa(i,\,lpha) = egin{cases} q|lpha| & i\!+\!|lpha|\!=\!2 \ q' & i\!=\!0,\,|lpha|\!=\!1 \ 0 & ext{otherwise}, \end{cases}$$

where q and q' are integers which satisfy $0 \leq q' \leq q-2$. Furthermore, $a_{i\alpha}(x, y), i+|\alpha| \leq 2$, are holomorphic at the origin, and $a_{2,0}=1$.

Remark. If q'=q-1, the above operators are said to satisfy Levi condition. Several authors considered singular Cauchy problems for such operators (see Nakane [1], Takasaki [2], and Urabe [4]). Perhaps we can also treat this case, but this requires some modifications which are not trivial. Thus we consider only the case of $q' \leq q-2$.

We assume that the equation

$$\sum_{i+|\alpha|=2} x^{q|\alpha|} a_{i\alpha}(x, y) \xi^i \eta^{\alpha} = 0$$

has two roots $\xi = x^q \lambda_i(x, y, \eta)$, i=1, 2, where $\lambda_i(x, y, \eta)$, i=1, 2, are holomorphic at $x=0, y=0, \eta=(1, 0, \dots, 0)$ and homogeneous of degree 1 in η . Furthermore we assume that

$$\lambda_1(x, y, \eta) \neq \lambda_2(x, y, \eta)$$

at $x=0, y=0, \eta=(1, 0, \dots, 0)$.

Our purpose is to solve the following singular Cauchy problems:

(1)
$$\begin{cases} Pu(x, y) = 0\\ (\partial/\partial x)^{i}u(0, y) = \dot{u}_{i}(y) & i = 0, 1 \end{cases}$$

Here $\dot{u}_i(y)$, i=0, 1, are multivalued holomorphic functions defined on $\{y \in C^n; |y_j| < R, j=1, 2, \dots, n, y_1 \neq 0\}$ with some R > 0, and satisfy $|\dot{u}_i(y)| \leq C \exp\{C |y_1|^{-(q-1-q')/(q+1)}\}$

with some C > 0 there.

Let us define $\varphi_i(x, y)$, i=1, 2, by

K. UCHIKOSHI

[Vol. 59(A),

$$\begin{cases} (\partial/\partial x)\varphi_i(x, y) - x^q \lambda_i(x, y, \nabla_y \varphi_i(x, y)) = 0\\ \varphi_i(0, y) = y_1, \end{cases}$$

and $\psi_i(x, y')$, i=1, 2, by

$$\varphi_i(x, y) = 0$$
 if and only if $y_1 = \psi_i(x, y')$.

Then we have the following

Theorem. Let r>0 be small enough, and $\theta \in \mathbf{R}$ be arbitrary. We define $\omega_{r,\theta} = \omega'_{r,\theta} \cup \omega''_{r,\theta}$ by

$$\omega_{r,\theta}' = \left\{ (x, y) \in \mathbb{C} \times \mathbb{C}^{n}; |x| < r, |y_{j}| < r, j = 1, 2, \dots, n, \\ |\arg(y_{1} - \psi_{i}(x, y')) - \theta| < \frac{\pi}{2} + r, i = 1, 2 \right\}$$
$$\omega_{r,\theta}'' = \left\{ (x, y) \in \mathbb{C} \times \mathbb{C}^{n}; |x| < r, |y_{j}| < r, j = 1, 2, \dots, n, \\ |\arg(y_{1} - \psi_{i}(x, y')) - \theta - \pi| < \frac{\pi}{2} + r, i = 1, 2 \right\}$$

Then there exists a unique solution u(x, y) of (1) which satisfies $|u(x, y)| \leq C \sum_{i=1}^{n} \exp\{C|\varphi_i(x, y)|^{-(q-1-q')/(q+1)}\}$

with some C>0 on $\omega_{r,\theta}$.

Remark. Let us fix $(x, y') \in C \times C^{n-1}$ arbitrarily. Let us define θ by $\theta = \arg(\psi_1(x, y') - \psi_2(x, y')) + \pi/2$. Then it is easy to see that $\omega_{r,\theta}$ is a domain in the universal covering space of $\omega_r = \{(x, y) \in C \times C^n; |x| < r, |y_j| < r, j = 1, 2, \dots, n, \varphi_i(x, y) \neq 0, i = 1, 2\}$ which projects to the whole base space ω_r . However, we cannot construct the solution on an arbitrary domain in the universal covering space of ω_r .

Remark. Furthermore, we can give a concrete representation of the solution. Let $\theta \in \mathbf{R}$ and $l \in \mathbf{Z}$ be arbitrary. We define θ_0 by

 $\begin{array}{l} \theta_0 = -\arg\{[\lambda_2(x,\,y,\,\eta) - \lambda_1(x,\,y,\,\eta)]_{x=0,\,y=0,\,\eta=(1,\,0,\,\dots,\,0)}\}.\\ \text{We define } V^i_{r,\theta,l},\,i\!=\!\!1,\,2,\,\text{by} \end{array}$

$$V_{r,\theta,l}^{i} = \left\{ (x, y) \in \mathbf{C} \times \mathbf{C}^{n}; |x| < r, |y_{j}| < r, j = 1, 2, \dots, n, \\ \left| (q+1) \arg x - (\theta_{0} + \pi l + \theta) - \frac{\pi}{2} \right| < \frac{3}{4}\pi, \\ |\arg(y_{1} - \psi_{i}(x, y')) - \theta| < \frac{\pi}{2} + r \right\}.$$

Then there exist holomorphic functions $v_{\theta,\iota}^i(x, y)$, i=1, 2, defined on $V_{x,\theta,\iota}^i$ which satisfy

 $|v_{\theta,i}^{i}(x, y)| \leqslant C \exp\{C|y_{1} - \psi_{i}(x, y')|^{-(q-1-q')/(q+1)}\}$ with some C > 0 on $V_{r,\theta,i}^{i}$ and

(2) $v_{\theta,l}^1(x, y) + v_{\theta,l}^2(x, y) = u(x, y)$

on $V_{r,\theta,l}^1 \cap V_{r,\theta,l}^2$. Since $\bigcup_{i \in \mathbb{Z}} (V_{r,\theta,l}^1 \cap V_{r,\theta,l}^2) = \omega'_{r,\theta}$, the solution u(x, y) is decomposed into the form (2) on $\omega'_{r,\theta}$, depending on arg x. We can give a concrete representation of $v_{r,\theta,l}^i(x, y)$ using some class of oper-

No. 4]

ators. Analogous results hold also on $w_{r,s}^{\prime\prime}$. The details will be given in Uchikoshi [3].

References

- S. Nakane: Propagation of singularities and uniqueness in the Cauchy problem at a doubly characteristic point. Comm. in Part. Diff. Eq., 6, 917-921 (1981).
- [2] K. Takasaki: Singular Cauchy problems for a class of weakly hyperbolic differential operators (to appear in Comm. in Part. Diff. Eq.).
- [3] K. Uchikoshi: Singular Cauchy problems for second order partial differential operators with non-involutory characteristics (to appear).
- [4] J. Urabe: On the theorem of Hamada for a linear second order equation with variable multiplicities. J. Math. Kyoto Univ., 19, 153-169 (1979).