## 31. Short Term Consistency Relations for Doubly Polynomial Splines

By Manabu Sakai<br>Department of Mathematics, Kagoshima University<br>(Communicated by Shokichi Ifanaga, m. J. A., March 12, 1983)

By making use of the $B$-spline $Q_{m+1}(x)$ :

$$
Q_{m+1}(x)=(1 / m!) \sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i}(x-i)_{+}^{m}
$$

where

$$
(x-i)_{+}^{m}= \begin{cases}(x-i)^{m} & \text { for } x \geq i \\ 0 & \text { for } x<i\end{cases}
$$

we consider a quartic spline $s(x)$ of the form:

$$
s(x)=\sum_{i=-4}^{n-1} \alpha_{i} Q_{5}(x / h-i), \quad n h=1
$$

Then the following short term consistency relation has been obtained by Usmani ([6]):
(*)

$$
\left(s_{i+1}-2 s_{i}+s_{i-1}\right)=\left(h^{2} / 12\right)\left(s_{i+1}^{\prime \prime}+10 s_{i}^{\prime \prime}+s_{i-1}^{\prime \prime}\right)
$$

where $s_{i}=s(i h)$ and $s_{i}^{\prime \prime}=s^{\prime \prime}(i h)$. The above relation has been generalized for even degree polynomial splines ([3]). For odd degree polynomial splines, we also have short term consistency relations at mid-points ([4]). For example, let $s(x)$ be a cubic, then
(**) $\quad\left(s_{i+3 / 2}-2 s_{i+1 / 2}+s_{i-1 / 2}\right)=\left(h^{2} / 24\right)\left(s_{i+3 / 2}^{\prime \prime}+22 s_{i+1 / 2}^{\prime \prime}+s_{i-1 / 2}^{\prime \prime}\right)$
where $s_{i+1 / 2}=s((i+1 / 2) h)$ and $s_{i+1 / 2}^{\prime \prime}=s^{\prime \prime}((i+1 / 2) h)$.
In the present paper we shall generalize the above relations (*) and ( $* *$ ) for doubly polynomial splines.

Let $s(x, y)$ be a polynomial spline of the form :

$$
s(x, y)=\sum_{i, j=-m}^{n-1} \alpha_{i, j} Q_{m+1}(x / h-i) Q_{m+1}(y / h-j)
$$

Then we have
Theorem 1. If $m$ is even and $k, l(\leq m-2)$ are also even, we have

$$
\sum_{i, j=0}^{m-2} c_{i, j}^{(k, l)} s_{i, j}=h^{k+l} \sum_{i, j=0}^{m-2} c_{i, j}^{(0,0)} s_{i, j}^{(k, l)}
$$

where

$$
\begin{aligned}
s_{i, j}^{(k, l)}= & \frac{\partial^{k+l}}{\partial x^{k} \partial y^{l}} s(i h, j h) \\
c_{i, j}^{(k, l)}= & \left\{Q_{m+1}^{(k)}(m-i)-Q_{m+1}^{(k)}(m-i+1)+\cdots\right\} \\
& \times\left\{Q_{m+1}^{(k)}(m-j)-Q_{m+1}^{(k)}(m-j+1)+\cdots\right\} .
\end{aligned}
$$

Proof. The following $m^{2}$-term consistency relation holds:
(E)

$$
\begin{aligned}
& \sum_{i, j=0}^{m-1} Q_{m+1}^{(k)}(m-i) Q_{m+1}^{(l)}(m-j) s_{p+i, r+j} \\
& \quad=h^{k+l} \sum_{i, j=0}^{m-1} Q_{m+1}(m-i) Q_{m+1}(m-j) s_{p+i, r+j}^{(k, l)}
\end{aligned}
$$

Since

$$
\begin{aligned}
& Q_{m+1}(x) \equiv 0 \quad \text { for } x \leq 0, x \geq m+1 \\
& Q_{m+1}(x) \equiv Q_{m+1}(m+1-x),
\end{aligned}
$$

for $i \geq m-1$;

$$
\begin{aligned}
c_{i, j}^{(k, l)}= & (-1)^{i-m+1}\left\{Q_{m+1}^{(k)}(1)-Q_{m+1}^{(k)}(2)+\cdots-Q_{m+1}^{(k)}(m)\right\} \\
& \times\left\{Q_{m+1}^{(l)}(m-j)-Q_{m+1}^{(l)}(m-j+1)+\cdots\right\} \\
= & \text { for even } k,
\end{aligned}
$$

for $j \geq m-1$;

$$
c_{i, j}^{(k, l)}=0 \quad \text { for even } l .
$$

Hence, an alternating sum obtained by
(i) writing down equation ( E ) with $(p, r)=(0,0)$, substracting equation ( E ) with $(p, r)=(1,0)$, adding equation ( E ) with $(p, r)=(2,0)$ and so on,
(ii) substracting equation ( E ) with $(p, r)=(0,1)$, adding equation (E) with $(p, r)=(1,1)$ and so on,
(iii) continuating these processes, is equal to the short term consistency relation.

As an example of the above relation, let $s$ be a doubly quartic spline, then

$$
\begin{aligned}
(1 / 24)\{ & s_{i+1, j+1}+s_{i+1, j-1}+s_{i-1, j+1}+s_{i-1, j-1} \\
& \left.+4\left(s_{i+1, j}+s_{i, j+1}+s_{i, j-1}+s_{i-1, j}\right)-20 s_{i, j}\right\} \\
= & (h / 24)^{2}\left\{\Delta s_{i+1, j+1}+\Delta s_{i+1, j-1}+\Delta s_{i-1, j+1}+\Delta s_{i-1, j-1}\right. \\
& \left.+10\left(\Delta s_{i+1, j}+\Delta s_{i, j+1}+\Delta s_{i, j-1}+\Delta s_{i-1, j}\right)+100 \Delta s_{i, j}\right\}
\end{aligned}
$$

This relation is useful for the numerical solution of a boundary value problem $\Delta u=f$ and the discretization error of this nine-point difference scheme is $O\left(h^{6}\right)$ ([2]).

If $m$ is odd, we have the following
Theorem 2. If $m$ is odd and $k, l(\leq m-1)$ are even, we have the short term consistency relation at mid-points :

$$
\sum_{i, j=0}^{m-1} d_{i, j}^{(k, l)} s_{i+1 / 2, j+1 / 2}=h^{k+l} \sum_{i, j=0}^{m-1} d_{i, j}^{(0,0)} s_{i+1 / 2, j+1 / 2}^{(k, l)}
$$

where

$$
\begin{aligned}
& s_{i+1 / 2, j+1 / 2}^{(k, l)}=\frac{\partial^{k+l}}{\partial x^{k} \partial y^{l}} s((i+1 / 2) h,(j+1 / 2) h) \\
& d_{i, j}^{(k, l)}=\left\{Q_{m+1}^{(k)}(m+1 / 2-i)-Q_{m+1}^{(k)}(m+3 / 2-i)+\cdots\right\} \\
& \quad \times\left\{Q_{m+1}^{(l)}(m+1 / 2-j)-Q_{m+1}^{(l)}(m+3 / 2-j)+\cdots\right\} .
\end{aligned}
$$

Let $s$ be a doubly cubic spline. Then from above we have

$$
\left.\left.\begin{array}{rl}
(1 / 48)\{ & s_{i+3 / 2, j+3 / 2}+s_{i+3 / 2, j-1 / 2}+s_{i-1 / 2, j+3 / 2}+s_{i-1 / 2, j-1 / 2} \\
& +10\left(s_{i+3 / i}^{/ 0}+1 / 2\right.
\end{array}+s_{i+1 / 2, j+3 / 2}+s_{i+1 / 2, j-1 / 2}+s_{i-1 / 2, j+1 / 2}\right)-44 s_{i+1 / 2, j+1 / 2}\right\}
$$

$$
\begin{aligned}
= & (h / 48)^{2}\left\{\Delta s_{i+3 / 2, j+3 / 2}+\Delta s_{i+3 / 2, j-1 / 2}+\Delta s_{i-1 / 2, j+3 / 2}+\Delta s_{i-1 / 2, j-1 / 2}\right. \\
& +22\left(\Delta s_{i+3 / 2, j+1 / 2}+\Delta s_{i+1 / 2, j+3 / 2}+\Delta s_{i+1 / 2, j-1 / 2}+\Delta s_{i-1 / 2, j+1 / 2}\right) \\
& \left.+484 \Delta s_{i+1 / 2, j+1 / 2\}}\right\} .
\end{aligned}
$$

## References

[1] J. Ahlberg, E. Nilson, and J. Walsh: The Theory of Splines and their Applications. Academic Press, New York (1967).
[2] S. Hitotsumatsu: Numerical Analysis. Shibundo (1966) (in Japanese).
[3] D. Meek: Some new linear relations for even degree polynomial splines on a uniform mesh. BIT, 20, 382-384 (1980).
[4] M. Sakai: Some new linear relations for odd degree polynomial splines at mid-points. Proc. Japan Acad., 59A, 24-25 (1983).
[5] -: On consistency relations for polynomial splines at mesh and mid points. ibid., 59A, 63-65 (1983).
[6] R. Usmani: Smooth spline approximations for the solution of a boundary value problem with engineering applications. J. Comp. and Appl., 6, 93-98 (1980).

