30. On 4-Manifolds Fibered by Tori. II

By Yukio MATSUMOTO

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1983)

This is a sequel to our previous note [2]. We will prove a signature formula for torus fibrations (Theorem 6) by combining Novikov additivity and W. Meyer's theorem [4]. This formula seems useful, especially in the study of singular fibers. Some computations will be presented. Also we will give a necessary condition for the existence of good torus fibrations in the sense of [3].

§ 5. The signature formula. Throughout the note, all manifolds will be compact, oriented and smooth. Sign (M) will denote the signature of the homological intersection form $H_2(M; \mathbb{Z}) \times H_2(M; \mathbb{Z}) \to \mathbb{Z}$, where M is a connected 4-manifold with or without boundary.

Let F_i be a singular fiber of a torus fibration $f_i: M_i^4 \rightarrow B_i^2$, for each i=1, 2. Let $\{p_i\}=f_i(F_i)$.

Definition. F_1 and F_2 are said to be topologically equivalent if there exist neighborhoods U_1 , U_2 of p_1 , p_2 in Int (B_1^2) , Int (B_2^2) , respectively, and orientation preserving homeomorphisms $h: U_1 \rightarrow U_2$ and $H: f_1^{-1}(U_1) \rightarrow f_2^{-1}(U_2)$, so that (i) $h(p_1) = p_2$ and (ii) $h \circ f_1 = f_2 \circ H$.

Let S denote the totality of topological equivalence classes of singular fibers. Let $(1/3)Z = \{m/3 \mid m \in Z\} \subset Q$.

Theorem 6. There exists a (practically computable) function σ : $S \rightarrow (1/3)Z$ with the following property: If $\{F_1, \dots, F_r\}$ is the set of all the singular fibers of a given torus fibration $f: M^4 \rightarrow B^2$ with M^4 closed, then Sign $(M) = \sum_{i=1}^r \sigma(F_i)$ holds.

Consider a situation in which a singular fiber F_0 splits into several singular fibers F'_1, \dots, F'_r through a certain deformation process (cf. [2], § 3). In that case, we have the following:

Corollary 6.1. $\sigma(F_0) = \sum_{i=1}^r \sigma(F'_i)$.

Remark. As we see above, each singular fiber behaves as if it has 'fractional signature'.

Proof of Theorem 6. Let $\omega: E \to X$ be any torus bundle over a connected surface X. Let $\partial X = C_1 \cup \cdots \cup C_r$. Let $\alpha_i \in SL(2, \mathbb{Z})$ be a monodromy matrix of the restriction $E | C_i$ of E to C_i , where C_i is oriented so that the orientation is concordant with that of X. The conjugacy class of α_i is uniquely determined.

Let ϕ : SL (2, Z) \rightarrow (1/3)Z be Meyer's class function whose explicit formula (containing the Dedekind sum) is found in [4], § 5.

Theorem 7 (Meyer [4], Satz 5). Sign $(E) = \sum_{i=1}^{r} \phi(\alpha_i)$.

Remark. $\tau(E, \partial E)$ in [4], Satz 5, is equal to -Sign(E). See the equation (6) in [4].

Now let $f: M \to B$ be a torus fibration, M being closed. Let $\{F_i, \dots, F_r\}$ be the set of all the singular fibers of f, D_i a small disk in B centred at $p_i = f(F_i)$, $i = 1, \dots, r$. We remove the saturated neighborhoods $N_i = f^{-1}(D_i)$, $i = 1, \dots, r$, from M. Then we get a torus bundle $f | E : E \to X$, where $E = M - \bigcup_{i=1}^r \operatorname{Int}(N_i)$, $X = B - \bigcup_{i=1}^r \operatorname{Int}(D_i)$. Let β_i be a monodromy matrix of a singular fiber F_i . Here we notice our convention that when we speak of a monodromy matrix of a singular fiber F_i , it is always computed w. r. t. the orientation of ∂D_i which is concordant with that of D_i (see [3], § 4). Therefore β_i is conjugate to the inverse of α_i defined above, and we have $\phi(\beta_i) = -\phi(\alpha_i)$ (see the formula (42) in [4]).

By Novikov additivity and Theorem 7, it follows that

S

$$\begin{split} \operatorname{ign}(M) &= \operatorname{Sign}(E) + \sum_{i=1}^{r} \operatorname{Sign}(N_i) \\ &= \sum_{i=1}^{r} \{-\phi(\beta_i) + \operatorname{Sign}(N_i)\}. \end{split}$$

Defining $\sigma(F_i)$ to be $-\phi(\beta_i) + \text{Sign}(N_i)$, we have the desired formula.

§6. Computations in good torus fibrations. A good torus fibration (GTF) is a torus fibration whose singular fibers are of normal type in the sense of [2], §4. Such singular fibers without removable linear branches are classified in [2], §4, [3], Thm. 3.1, and their monodromy matrices are known, [3], Thm. 4.1. Thus their σ -numbers can be computed.

Before stating the results of computation we introduce some refined notation for the classes of singular fibers,

No. 3]

$$\begin{split} & \tilde{E}_{\mathfrak{s}}^{\pm} : \tilde{E}_{\mathfrak{s}} \text{ with } \mathfrak{e}_{\mathfrak{s}} m_{\mathfrak{s}} \equiv \mp 1 \pmod{3}, \\ & \tilde{E}_{\mathfrak{r}}^{\pm} : \tilde{E}_{\mathfrak{r}} \text{ with } \mathfrak{e}_{\mathfrak{s}} m_{\mathfrak{s}} \equiv \mp 1 \pmod{4}, \\ & \tilde{E}_{\mathfrak{s}}^{\pm} : \tilde{E}_{\mathfrak{s}} \text{ with } \mathfrak{e}_{\mathfrak{s}} m_{\mathfrak{s}} \equiv \mp 1 \pmod{6}, \end{split}$$

where in the last three classes, ε_3 (or m_3) denotes the sign of the edge (or the multiplicity of the vertex) in the (p_3) -branch which is adjacent to the *m*-vertex. Here we are referring to the graph on p. 300 of [2]. (Cf. [3], Thm. 4.1.)

Theorem 8. We have the following table (in which $\Sigma \varepsilon$ stands for the sum of the signs of all the edges):

class of F		$\sigma(F)$	euler number $\chi(F)$			
$_{m}I_{0}$		0	0			
Ã	$\int_{m} \tilde{A}^{\pm}_{\nu}$	$\mp (2/3) u$	ν			
	Twin	0	2			
$ ilde{D}$	$ ilde{D}_4$	$-(\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_4)$	6			
	$ ilde{D}^{\pm}_{\scriptscriptstyle u+5}$	\mp (2/3)(ν +1)-(ε_1 + ε_2 + ε_3 + ε_4)	$\nu + 7$			
$ ilde{E}_6^{\pm}$		$\pm (2/3) - \Sigma arepsilon$	(C			
$ ilde{E}_7^{\pm}$		$\pm 1 - \Sigma \varepsilon$	(number of vertices)+1			
$ ilde{E}_8^{\pm}$		$\pm (4/3) - \Sigma \varepsilon$				

Although they are not necessarily of normal type, we can make similar computations for the singular fibers of complex elliptic surfaces, either by using the Table I in [1], p. 604 or by blowing down exceptional curves in the singular fibers of normal type:

Corollary 8.1 (for the symbols ${}_{m}I_{b}$, ${}_{m}I_{b}^{*}$, II, etc., see [1]).

F	$_{m}\mathbf{I}_{0}$	${}_{m}\mathbf{I}_{b}$	${}_m\mathbf{I}_b^*$	II	II*	III	III*	IV	IV*
$\sigma(F)$	0	-(2/3)b	-(2/3)(b+6)	-4/3	-20/3	-2	-6	-8/3	-16/3

Comparing the table with the values of euler numbers, we obtain $\sigma(F) = -(2/3)\chi(F)$. This is considered as a 'local form' of a known relation for each elliptic surface M which contains no exceptional curves in its fiber: Sign $(M) = -(2/3)\chi(M)$.

Returning to our torus fibration, we have the following theorem by a closer analysis of singular fibers:

Theorem 9. Let $F = \Sigma m_i \Theta_i$ be a singular fiber of normal type. If the self-intersection number $\Theta_i \cdot \Theta_i$ is an even integer for each Θ_i , then $|\sigma(F)| \leq (2/3)\chi(F)$.

Corollary 9.1. Let $f: M \to B$ be a GTF. Suppose that M is closed and $w_2(M)=0$, then $|\text{Sign}(M)| \leq (2/3)\chi(M)$.

For example, a connected sum of K3 surfaces M' = K3 # K3 does not admit any GTF, because $w_2(M') = 0$, Sign (M') = -32 and $\chi(M') = 46$. On the other hand M' has a general torus fibration [2], Thm. 4. Thus the torus fibration cannot be deformed into GTF. This means that the 'program' stated in [3], §1 must be amended slightly.

References

- [1] K. Kodaira: On compact analytic surfaces; II. Ann. of Math., 77, 563-625 (1963).
- [2] Y. Matsumoto: On 4-manifolds fibered by tori. Proc. Japan Acad., 58A, 298-301 (1982).
- [3] ——: Good torus fibrations. University of Tokyo, Oct. (1982) (preprint).
- [4] W. Meyer: Die Signatur von Flächenbündeln. Math. Ann., 201, 239-264 (1973).