30. On 4-Manifolds Fibered by Tori. II

By Yukio Matsumoto
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1983)

This is a sequel to our previous note [2]. We will prove a signature formula for torus fibrations (Theorem 6) by combining Novikov additivity and W. Meyer's theorem [4]. This formula seems useful, especially in the study of singular fibers. Some computations will be presented. Also we will give a necessary condition for the existence of good torus fibrations in the sense of [3].
§5. The signature formula. Throughout the note, all manifolds will be compact, oriented and smooth. Sign (M) will denote the signature of the homological intersection form $H_{2}(M ; Z) \times H_{2}(M ; Z) \rightarrow Z$, where M is a connected 4-manifold with or without boundary.

Let F_{i} be a singular fiber of a torus fibration $f_{i}: M_{i}^{4} \rightarrow B_{i}^{2}$, for each $i=1,2$. Let $\left\{p_{i}\right\}=f_{i}\left(F_{i}\right)$.

Definition. F_{1} and F_{2} are said to be topologically equivalent if there exist neighborhoods U_{1}, U_{2} of p_{1}, p_{2} in $\operatorname{Int}\left(B_{1}^{2}\right)$, Int $\left(B_{2}^{2}\right)$, respectively, and orientation preserving homeomorphisms $h: U_{1} \rightarrow U_{2}$ and $H: f_{1}^{-1}\left(U_{1}\right) \rightarrow f_{2}^{-1}\left(U_{2}\right)$, so that (i) $h\left(p_{1}\right)=p_{2}$ and (ii) $h \circ f_{1}=f_{2} \circ H$.

Let \mathcal{S} denote the totality of topological equivalence classes of singular fibers. Let $(1 / 3) \boldsymbol{Z}=\{m / 3 \mid m \in \boldsymbol{Z}\} \subset \boldsymbol{Q}$.

Theorem 6. There exists a (practically computable) function σ : $\mathcal{S} \rightarrow(1 / 3) Z$ with the following property: If $\left\{F_{1}, \cdots, F_{r}\right\}$ is the set of all the singular fibers of a given torus fibration $f: M^{4} \rightarrow B^{2}$ with M^{4} closed, then $\operatorname{Sign}(M)=\sum_{i=1}^{r} \sigma\left(F_{i}\right)$ holds.

Consider a situation in which a singular fiber F_{0} splits into several singular fibers $F_{1}^{\prime \prime}, \cdots, F_{r}^{\prime}$ through a certain deformation process (cf. [2], § 3). In that case, we have the following:

Corollary 6.1. $\sigma\left(F_{0}\right)=\sum_{i=1}^{r} \sigma\left(F_{i}^{\prime}\right)$.
Remark. As we see above, each singular fiber behaves as if it has 'fractional signature'.

Proof of Theorem 6. Let $\omega: E \rightarrow X$ be any torus bundle over a connected surface X. Let $\partial X=C_{1} \cup \cdots \cup C_{r}$. Let $\alpha_{i} \in \operatorname{SL}(2, Z)$ be a monodromy matrix of the restriction $E \mid C_{i}$ of E to C_{i}, where C_{i} is oriented so that the orientation is concordant with that of X. The conjugacy class of α_{i} is uniquely determined.

Let $\phi: \mathrm{SL}(2, Z) \rightarrow(1 / 3) Z$ be Meyer's class function whose explicit formula (containing the Dedekind sum) is found in [4], § 5 .

Theorem 7 (Meyer [4], Satz 5). \quad Sign $(E)=\sum_{i=1}^{r} \phi\left(\alpha_{i}\right)$.
Remark. $\tau(E, \partial E)$ in [4], Satz 5 , is equal to $-\operatorname{Sign}(E)$. See the equation (6) in [4].

Now let $f: M \rightarrow B$ be a torus fibration, M being closed. Let $\left\{F_{1}, \cdots, F_{r}\right\}$ be the set of all the singular fibers of f, D_{i} a small disk in B centred at $p_{i}=f\left(F_{i}\right), i=1, \cdots, r$. We remove the saturated neighborhoods $N_{i}=f^{-1}\left(D_{i}\right), i=1, \cdots, r$, from M. Then we get a torus bundle $f \mid E: E \rightarrow X$, where $E=M-\bigcup_{i=1}^{r} \operatorname{Int}\left(N_{i}\right), X=B-\bigcup_{i=1}^{r} \operatorname{Int}\left(D_{i}\right)$. Let β_{i} be a monodromy matrix of a singular fiber F_{i}. Here we notice our convention that when we speak of a monodromy matrix of a singular fiber F_{i}, it is always computed w. r.t. the orientation of ∂D_{i} which is concordant with that of D_{i} (see [3], §4). Therefore β_{i} is conjugate to the inverse of α_{i} defined above, and we have $\phi\left(\beta_{i}\right)=-\phi\left(\alpha_{i}\right)$ (see the formula (42) in [4]).

By Novikov additivity and Theorem 7, it follows that

$$
\begin{aligned}
\operatorname{Sign}(M) & =\operatorname{Sign}(E)+\sum_{i=1}^{r} \operatorname{Sign}\left(N_{i}\right) \\
& =\sum_{i=1}^{r}\left\{-\phi\left(\beta_{i}\right)+\operatorname{Sign}\left(N_{i}\right)\right\} .
\end{aligned}
$$

Defining $\sigma\left(F_{i}\right)$ to be $-\phi\left(\beta_{i}\right)+\operatorname{Sign}\left(N_{i}\right)$, we have the desired formula.
§6. Computations in good torus fibrations. A good torus fibration (GTF) is a torus fibration whose singular fibers are of normal type in the sense of [2], §4. Such singular fibers without removable linear branches are classified in [2], § 4, [3], Thm. 3.1, and their monodromy matrices are known, [3], Thm. 4.1. Thus their σ-numbers can be computed.

Before stating the results of computation we introduce some refined notation for the classes of singular fibers,

$\tilde{E}_{\tilde{E}_{f}^{f}}: \tilde{E}_{6}$ with $\varepsilon_{3} m_{3} \equiv \mp 1(\bmod 3)$,
$\tilde{E}_{7}^{ \pm}: \tilde{E}_{7}$ with $\varepsilon_{3} m_{3} \equiv \mp 1(\bmod 4)$,
$\tilde{E}_{8}^{ \pm}: \tilde{E}_{8}$ with $\varepsilon_{3} m_{3} \equiv \mp 1(\bmod 6)$,
where in the last three classes, ε_{3} (or m_{3}) denotes the sign of the edge (or the multiplicity of the vertex) in the (p_{3})-branch which is adjacent to the m-vertex. Here we are referring to the graph on p .300 of [2]. (Cf. [3], Thm. 4.1.)

Theorem 8. We have the following table (in which \sum_{ε} stands for the sum of the signs of all the edges):

class of F		$\sigma(F)$	euler number $\chi(F)$
${ }_{m} I_{0}$		0	0
\tilde{A}	${ }_{m} \tilde{A}_{v}^{ \pm}$	$\mp(2 / 3) \nu$	ν
	Twin	0	2
\tilde{D}	\tilde{D}_{4}	$-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)$	6
	$\tilde{D}_{v+5}^{ \pm}$	$\mp(2 / 3)(\nu+1)-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)$	$\nu+7$
$\tilde{E}_{\text {E }}^{\text {t }}$		$\pm(2 / 3)-\Sigma^{\prime}$	(number of vertices) +1
	$\tilde{E}_{7}^{\text {t }}$	$\pm 1-\Sigma_{\varepsilon}$	
	$\tilde{E}_{8}^{\text {t }}$	$\pm(4 / 3)-\Sigma \varepsilon$	

Although they are not necessarily of normal type, we can make similar computations for the singular fibers of complex elliptic surfaces, either by using the Table I in [1], p. 604 or by blowing down exceptional curves in the singular fibers of normal type:

Corollary 8.1 (for the symbols ${ }_{m} \mathrm{I}_{b},{ }_{m} \mathrm{I}_{b}^{*}$, II, etc., see [1]).

F	${ }_{n} \mathrm{I}_{0}$	${ }_{m} \mathrm{I}_{b}$	${ }_{m} \mathrm{I}_{b}^{*}$	II	II *	III	III*	IV	IV *
$\sigma(F)$	0	$-(2 / 3) b$	$-(2 / 3)(b+6)$	$-4 / 3$	$-20 / 3$	-2	-6	$-8 / 3$	$-16 / 3$

Comparing the table with the values of euler numbers, we obtain $\sigma(F)=-(2 / 3) \chi(F)$. This is considered as a 'local form' of a known relation for each elliptic surface M which contains no exceptional curves in its fiber : $\operatorname{Sign}(M)=-(2 / 3) \chi(M)$.

Returning to our torus fibration, we have the following theorem by a closer analysis of singular fibers:

Theorem 9. Let $F=\Sigma m_{i} \theta_{i}$ be a singular fiber of normal type. If the self-intersection number $\Theta_{i} \cdot \Theta_{i}$ is an even integer for each Θ_{i}, then $|\sigma(F)| \leqq(2 / 3) \chi(F)$.

Corollary 9.1. Let $f: M \rightarrow B$ be a GTF. Suppose that M is closed and $w_{2}(M)=0$, then $|\operatorname{Sign}(M)| \leqq(2 / 3) \chi(M)$.

For example, a connected sum of $K 3$ surfaces $M^{\prime}=K 3 \# K 3$ does not admit any GTF, because $w_{2}\left(M^{\prime}\right)=0, \operatorname{Sign}\left(M^{\prime}\right)=-32$ and $\chi\left(M^{\prime}\right)=46$.

On the other hand M^{\prime} has a general torus fibration [2], Thm. 4. Thus the torus fibration cannot be deformed into GTF. This means that the 'program' stated in [3], § 1 must be amended slightly.

References

[1] K. Kodaira: On compact analytic surfaces; II. Ann. of Math., 77, 563-625 (1963).
[2] Y. Matsumoto: On 4-manifolds fibered by tori. Proc. Japan Acad., 58A, 298-301 (1982).
[3] -: Good torus fibrations. University of Tokyo, Oct. (1982) (preprint).
[4] W. Meyer: Die Signatur von Flächenbündeln. Math. Ann., 201, 239-264 (1973).

