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0. The purpose of the present note is to show that the differen-
tial equation with linear coefficients (so-called Laplace’s differential
equation)
( 1 ) aty’(t)+ (at+ b)y’(t) + (aot+ bo)y(t) =0
is convertible into

( 2 ) Dy q(s) (- 2a.+ b,)s-a+ bo.
y p(s) a.s +as+ ao

Here D is "the operator of algebraic derivative" and s is "the operator
of differentiation" in the operational calculus, of J. Mikusifiski
(Pergamon Press (1959)), and fractions Dy/y and q(s)/p(s) are "con-
volution quotients".

We shall show that, if the algebraic equation

( 3 ) p(z) a.z +az+ ao
has two distinct roots z and z so, that

q(z)_ ,
?

,
(, and , are complex numbers),

p(z) z-z z-z
then the convolution quotient
( 4 ) y C(8-- zlI)ri(8-- z2I)r (C is a non-zero, constant)
satisfies equation (2). In this way, we can solve Bessel differentiaI
equation, Laguerre differential equation and the like algebraically, by
simply making use of the general binomial expansion

(1-az)=0 (-a)z (convergent for

without appeal to other nalytical tools like the Laplace transform
nor to, the Fuchs theory of differential equations.

1. The definition of D and of (s-zlI)’. Let C=C[0, oo)be the
totality o complex-valued continuous unctions f={f(t)}, g={g(t)},

is a commutative ring by the sum f+g {f(t) + g(t)} and the.

(co,nvolution) pro.duct fg={_[if(t-u)g(u)du1.--- By virtue of Titch-

marsh’s convolution theorem, we have fg=O ((fg)(t)-- O) if and only if
either f=0 or g=0. Hence the totality 5"/5’ of fractions (convolution
quotients) fig (f g e C and g:/:0), f/gl" constitutes a commutative
ring by
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f
_
f _fg+fg, f f ff.

g g gg g g gg
C is a subring of C/C by identifying f e C with fg/g e C/C.

We denote h=l} (the operator of integration), I=h/h=g/g (the
operator of the product unit) and s-I/h-g/hg (the operator of differ-
entiation). We have
(5) h--F(n)-- (n-l, 2, h-l),

( 6 ) If {f(=)(t)} e C, then f()=s=f-s-[f(O)] [f(=-)(0)],
[where [a]=s{a} for complex number

Definition of D. D is a mapping of C/C into C/C such that
[By= {-tf(t)} for f e C,

( 7 ) ID f (Df)g-f(Dg) for f e

and it is not difficult to. prove that

(8)

(8)’

(9)

l +D +-- - g,

Moreover, it is not difficult to show that

a= e C/C and b e C/C, then
n q

a_ (Da)b-a(Db) =D mq.
b b np

We have thus
s I),inDh=-nh+ and Ds=ns- (n=l, 2,...

[particular Dh=DI=O, Ds=DI=O and Ds=I.
Proof. Dh={-tF(n)-t-}=-F(n)-’F(n+l)h+.
The hitherto, formulas are proved by J. Mikusifiski in his bok

mentioned above.

(10)

(10)’

We now define and prove the following.
For any complex number T,

lr+
Dhr-- -’hr+, where hr. ’-----h {F(n)-t-}
In being any integer 1 such that Re(+n)> 1.

Proof. Easy from (5), (8)’ and (9).
We have thus, by (8)’ and (10),

I --DhDsr=D hr+a-r=sr-a.
h hr

The next formula is very important"

D(I-h)r=r(I--h)r-h, where
(11)

and
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(12)

the infinite series ,._, (-a)F(k)-t- is, thanks to the convergent

factors F(k)-, convergent at every t and it can be differentiated with
respect to. t by term-wise differentiation.

Now we have, by the above,

= (--)-h-h=r(I-h)-h.

As a corollary of (11), we have

D(s--aI)r=(s--aI)-, where (s-M)= (I-ah)
h

Proof. D (I--rh) (D(I-ah)gh-(I--ah)(Dh9
h h

(I-ah)r-(ahhr+(I-ah)h)
h2

,(I-- oh)-hr/
2r

=r(s-M)-’.

2
continuously differentiable, we can rewrite (1) by (6) and (7) as follows:

-a2D(s2y s[y(0)] [y’(0)]) q- (-a,D q- bl)(sy- [y(0)])
+ (-aoD+ bo)y= O.

Hence, by Ds=I, we obtain (2) assuming the initial c.ndition of y(t):
(13) y(0)-0 if a2=/=b,.
This pro.ves (4) by (12).

Example 1 (Bessel differential equation). For the equation
( 1 )’ ty"(t)--(2a--1)y’(t)+ ty(t)=O,
we have a.- b 2a and

( 2 )’ D___y -a- 1/2 + -a- 1/2.
y s+iI s-iI

Hence
(4)’

Proof of (4)and examples. Assuming that y(t)O is twice

y C(s+iI)-"-’=(s- iI)--’/= C(s +I)-"-

=C(h(I+h)-9/’ C(0(--1/2) )k h

satisfies (2)’. If Rea0, we obtain

( --a-- 1/2) -- 1)F(2a+2k+ 1)F(a+ 1)

Thus i2 Re a> 1, then

y C F(a+ 1)2" (-- 1) ( t =+="

(2+1) 0 (+1)(++1)
is twice continuously differentiable in t for t0 including t=0. Thus
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the solution

(14) yo(t): (--1)
_-0 (+

of (2)’ satisfying (13) is a solution of (1)’ for t_>_0. This means that,
when t0 and Real, the coefficient, of t+"- in the infinite series
given by

mus vanish as an analytic unction of (=0, 1, 2, ...).
Therefore, since y.(t) with Rea0 is also twice continuously

differentiable in t)0, we see, as in the case of Real, that the
formula

ty. (t)- (2a- )y.(t) + ty.(t)
must vanish, because the coefficients o. t+"- all vanish.

Thus we have pro.ved that, when Rea0 or =0, y.(t) given in
(14) is a solution of (1)’ at every t0 satisfying (13). Hence we have
obtained Bessel unction of the first kind and of order a (Rea0 or
a=0)"

(6) J"()=-"Y"()=

which satisfies the original Bessel equation
(7) vJ:’(t) + t]’.(t) + (v-ag]At) 0 o,r t>0.

Example 2 (Laguerre differential equation). For the equation
()" ty"(t)- (t+a- )y’(t) + (a+ )y(t) =0
we have a-b= and

(2)" D
y s-s s s-I

Hence, for Rea)0 or or
(4)" y..= Cs--"-(s-I) Ch +"(I- h)

is a solution of (2)" and t-, reduces o a olynomial in t if and only
if 2= (=0, 1, 2, ...). So we have, by takin C as ()-F(++l),

t-y..- F(n++l) ( n (-t)
n =o k F(k+a+l)

=o (n+) (-- t) =L)(t).

We have thus obtained the n-th Laguerre polynomial o order a" L)(t).
When Rea0 or a=0, tL)(t) is surely solution o, (1)" with 2=n
or t0 nd stisfies (13).

Remark. The equation o the 2orm
Dy_
y (s--a)

is st,isfied by y=Cee- which belongs to /. We omit the proof.


