24. Construction of Integral Basis. II

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal \mathfrak{y}, k its quotient field, \bar{k} an algebraic closure of k, and k_{s} the separable closure of k in \bar{k}. Let θ be an element of k_{s} which is integral over \mathfrak{o}. In Part I, we have defined divisor polynomials and integrality indexes of θ, by means of which we have given an integral basis of $k(\theta)$ explicitly.

In this part, we shall define primitive divisor polynomials of θ, with which the divisor polynomials of θ will be expressed explicitly. We denote by | | a fixed valuation of \bar{k}, extending the valuation of k. Let $f(x)$ be the minimal polynomial of θ over k, and assume that the degree of n of $f(x)$ is greater than 1 .
$\S 1$. We define a finite sequence $\left\{\lambda_{i}(\theta, k)\right\}_{i=1,2, \ldots, r}$ of real numbers and a finite sequence $\left\{m_{i}(\theta, k)\right\}_{i=0,1,2, \ldots, r}$ of natural numbers inductively as follows.

Definition 1. We put $m_{0}(\theta, k)=n, \lambda_{i}(\theta, k)=\min \{|\theta-\beta| \mid \beta \in \bar{k}$ such that $\left.[k(\beta): k]<\mathrm{m}_{i-1}(\theta, k)\right\}$, and $m_{i}(\theta, k)=\min \{[k(\gamma): k] \mid \gamma \in \bar{k}$ such that $\left.|\theta-\gamma|=\lambda_{i}(\theta, k)\right\}$. We have clearly $\lambda_{i}(\theta, k)<\lambda_{i+1}(\theta, k)$ and $m_{i}(\theta, k)$ $>m_{i+1}(\theta, k)$, and there exists some integer r such that $m_{r}(\theta, k)=1 . \quad r$ is said to be the depth of $f(x)$ or of θ over k.
$\lambda_{i}(\theta, k)$ and $m_{i}(\theta, k)$ do not depend upon the choice of a root θ of $f(x)$.

Proposition 1. There exists an element α_{i} of k_{s} satisfying $\left|\theta-\alpha_{i}\right|$ $=\lambda_{i}(\theta, k)$, and $\left[k\left(\alpha_{i}\right): k\right]=m_{i}(\theta, k)(i=1, \cdots, r)$.

Definition 2. We call the minimal polynomial of α_{i} over k an i-th primitive divisor polynomial of θ or of $f(x)$ over k.

Proposition 2. An i-th primitive divisor polynomial of $f(x)$ over k is a divisor polynomial of $f(x)$ of degree $m_{i}(\theta, k)$ over k.

Proposition 3. We assume that the depth r of $f(x)$ is greater than 1. Then for any integer $i(1<i \leq r)$, an i-th primitive divisor polynomial of $f(x)$ over k is a first primitive divisor polynomial over k of an (i-1)-th primitive divisor polynomial of $f(x)$ over k.

Now we assume that an element θ of k_{s} is not contained in k. Let α, η be two elements of k_{s} such that $|\theta-\eta|=\lambda_{1}(\theta, k)$, and $|\theta-\alpha|=\lambda_{1}(\theta, k)$, $[k(\alpha): k]=m_{1}(\theta, k)$. For any Galois extension F of k, we denote by $G(F / k)$ the Galois group of F over k. Suppose that F contains $k(\theta, \alpha, \eta)$.

We put $H=\left\{\sigma \in G(F / k)| | \theta-\theta^{\sigma} \mid \leq \lambda_{1}(\theta, k)\right\}$, then H is obviously a subgroups of $G(F / k)$. Let L be the subfield of F fixed by H. It is easy to see that L does not depend upon the choice of F. The notations α, η, L will keep these meanings throughout this section.

Proposition 4. Let T be the maximal tamely ramified subextension of $k(\alpha)$ over k. Then we have

$$
T \subset L \subset k(\theta) \cap k(\eta) .
$$

Proposition 5. For any element $\beta \neq 0$ of $k(\alpha)$, there exist elements $\gamma \in k(\theta), \delta \in k(\eta)$ such that

$$
|\beta-\gamma|<|\beta|, \quad \text { and } \quad|\beta-\delta|<|\beta| .
$$

For any finite extension k^{\prime} over k, we denote by $e\left(k^{\prime} / k\right), f\left(k^{\prime} / k\right)$ the ramification index and the residue class degree of the extension k^{\prime} / k, respectively.

The next proposition follows from Propositions 4 and 5.
Proposition 6. We have

$$
e(k(\alpha) / k)|e(k(\theta) / k), \quad f(k(\alpha) / k)| f(k(\theta) / k)
$$

and

$$
e(k(\alpha) / k)|e(k(\eta) / k), \quad f(k(\alpha) / k)| f(k(\eta) / k)
$$

Corollary 1. Assume that the depth r of $f(x)$ is greater than 1. Then for any $i(1 \leq i \leq r)$ we have

$$
m_{i}(\theta, k) \mid m_{i-1}(\theta, k)
$$

Corollary 2. If $k(\theta)$ is tamely ramified over k, we have $L=k(\alpha)$.
Remark. As we will see later, $k(\alpha)$ is not necessarily contained by $k(\theta)$, when $k(\theta)$ is not tamely ramified over k.

The following proposition is useful in numerical applications.
Proposition 7. Let $f_{i}(x)$ be an i-th primitive divisor polynomial of $f(x)(1 \leq i \leq r$, where r is the depth of $f(x))$, and let l_{t} be the natural number such that $l_{i}-1<\operatorname{ord}_{\mathfrak{y}}\left(f_{i}(\theta)\right) \leq l_{i}$. Then $f_{i}(x)$ is irreducible $\bmod \mathfrak{y}^{l_{i}}$ in $\mathfrak{0}[x]$.
§2. The following theorem shows how we can construct divisor polynomials of $f(x)$ by means of the primitive divisor polynomials of $f(x)$.

Theorem 1. Let r be the depth of $f(x)$, and $f_{i}(x)$ an i-th primitive divisor polynomial of $f(x)(i=1, \cdots, r)$. For any integer m such that $1 \leq m<n$, we define uniquely a finite sequence $q_{1}(m), \cdots, q_{r}(m)$ of integers by the following conditions.

$$
m=\sum_{i=1}^{r} q_{i}(m) m_{i}(\theta, k), \quad \text { and } \quad 0 \leq q_{i}(m)<\frac{m_{i-1}(\theta, k)}{m_{i}(\theta, k)}, \quad(i=1, \cdots, r)
$$

Then $\prod_{i=1}^{r} f_{i}(x)^{q_{i}(m)}$ is a divisor polynomial of degree m of $f(x)$ over k.
Corollary. Let $g_{m}(x)$ be a divisor polynomial of degree m of $f(x)$ over k. Put $\kappa_{i}=\operatorname{ord}_{\vartheta}\left(f_{i}(\theta)\right)(1 \leq i \leq r)$ and $\mu_{m}=\operatorname{ord}_{\mathfrak{\eta}}\left(g_{m}(\theta)\right)(1 \leq m<n)$. Then we have

$$
\sum_{m=1}^{n-1} \mu_{m}=\frac{n}{2} \sum_{i=1}^{r}\left(\frac{m_{i-1}(\theta, k)}{m_{i}(\theta, k)}-1\right) \cdot \kappa_{i} .
$$

By this corollary and Theorem 3 in Part I, we have the following.
Proposition 8. Let $D\left(1, \theta, \cdots, \theta^{n-1}\right)$ be the discriminant of $\mathrm{o}[\theta]$ over \mathfrak{o} and $D(k(\theta) / k)$ the discriminant of $\mathfrak{D}_{k(\theta)}$ over $\mathfrak{0}$. Then we have

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{y}}(D(k(\theta) / k))=f \cdot(e-1)-n & \sum_{i=1}^{r}\left(\frac{m_{i-1}(\theta, k)}{m_{i}(\theta, k)}-1\right) \cdot \kappa_{i} \\
& \quad+\operatorname{ord}_{\mathfrak{y}}\left(D\left(1, \theta, \cdots, \theta^{n-1}\right)\right) .
\end{aligned}
$$

In Part III, we will give an explicit construction of the primitive divisor polynomials from the given polynomial $f(x)$.

Reference

[1] K. Okutsu: Construction of integral basis. I. Proc. Japan Acad., 58A, 4749 (1982).

