24. Construction of Integral Basis. II

By Kösaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal v, k its quotient field, \bar{k} an algebraic closure of k, and k_s the separable closure of k in \bar{k} . Let θ be an element of k_s which is integral over o. In Part I, we have defined divisor polynomials and integrality indexes of θ , by means of which we have given an integral basis of $k(\theta)$ explicitly.

In this part, we shall define primitive divisor polynomials of θ , with which the divisor polynomials of θ will be expressed explicitly. We denote by $| \ |$ a fixed valuation of \bar{k} , extending the valuation of k. Let f(x) be the minimal polynomial of θ over k, and assume that the degree of n of f(x) is greater than 1.

§1. We define a finite sequence $\{\lambda_i(\theta, k)\}_{i=1,2,...,r}$ of real numbers and a finite sequence $\{m_i(\theta, k)\}_{i=0,1,2,...,r}$ of natural numbers inductively as follows.

Definition 1. We put $m_0(\theta, k) = n$, $\lambda_i(\theta, k) = \min\{|\theta - \beta| | \beta \in \bar{k} \text{ such that } [k(\beta):k] < m_{i-1}(\theta, k)\}$, and $m_i(\theta, k) = \min\{[k(\gamma):k] | \gamma \in \bar{k} \text{ such that } |\theta - \gamma| = \lambda_i(\theta, k)\}$. We have clearly $\lambda_i(\theta, k) < \lambda_{i+1}(\theta, k)$ and $m_i(\theta, k) > m_{i+1}(\theta, k)$, and there exists some integer r such that $m_r(\theta, k) = 1$. r is said to be the *depth* of f(x) or of θ over k.

 $\lambda_i(\theta, k)$ and $m_i(\theta, k)$ do not depend upon the choice of a root θ of f(x).

Proposition 1. There exists an element α_i of k_s satisfying $|\theta - \alpha_i| = \lambda_i(\theta, k)$, and $[k(\alpha_i): k] = m_i(\theta, k)$ $(i=1, \dots, r)$.

Definition 2. We call the minimal polynomial of α_i over k an *i*-th primitive divisor polynomial of θ or of f(x) over k.

Proposition 2. An *i*-th primitive divisor polynomial of f(x) over k is a divisor polynomial of f(x) of degree $m_i(\theta, k)$ over k.

Proposition 3. We assume that the depth r of f(x) is greater than 1. Then for any integer i $(1 \le i \le r)$, an i-th primitive divisor polynomial of f(x) over k is a first primitive divisor polynomial over kof an (i-1)-th primitive divisor polynomial of f(x) over k.

Now we assume that an element θ of k_s is not contained in k. Let α , η be two elements of k_s such that $|\theta - \eta| = \lambda_1(\theta, k)$, and $|\theta - \alpha| = \lambda_1(\theta, k)$, $[k(\alpha):k] = m_1(\theta, k)$. For any Galois extension F of k, we denote by G(F/k) the Galois group of F over k. Suppose that F contains $k(\theta, \alpha, \eta)$.

K. OKUTSU

We put $H = \{\sigma \in G(F/k) | |\theta - \theta^{\sigma}| \le \lambda_i(\theta, k)\}$, then H is obviously a subgroups of G(F/k). Let L be the subfield of F fixed by H. It is easy to see that L does not depend upon the choice of F. The notations α , η , L will keep these meanings throughout this section.

Proposition 4. Let T be the maximal tamely ramified subextension of $k(\alpha)$ over k. Then we have

 $T \subset L \subset k(\theta) \cap k(\eta).$

Proposition 5. For any element $\beta \neq 0$ of $k(\alpha)$, there exist elements $\gamma \in k(\theta)$, $\delta \in k(\eta)$ such that

$$|eta\!-\!\gamma|\!<\!|eta|$$
, and $|eta\!-\!\delta|\!<\!|eta|$.

For any finite extension k' over k, we denote by e(k'/k), f(k'/k) the ramification index and the residue class degree of the extension k'/k, respectively.

The next proposition follows from Propositions 4 and 5.

Proposition 6. We have

 $e(k(\alpha)/k) | e(k(\theta)/k), \qquad f(k(\alpha)/k) | f(k(\theta)/k)$

and

 $e(k(\alpha)/k)|e(k(\eta)/k), \qquad f(k(\alpha)/k)|f(k(\eta)/k).$

Corollary 1. Assume that the depth r of f(x) is greater than 1. Then for any $i (1 \le i \le r)$ we have

 $m_i(\theta, k) \mid m_{i-1}(\theta, k).$

Corollary 2. If $k(\theta)$ is tamely ramified over k, we have $L = k(\alpha)$. Remark. As we will see later, $k(\alpha)$ is not necessarily contained by $k(\theta)$, when $k(\theta)$ is not tamely ramified over k.

The following proposition is useful in numerical applications.

Proposition 7. Let $f_i(x)$ be an *i*-th primitive divisor polynomial of f(x) $(1 \le i \le r$, where r is the depth of f(x)), and let l_i be the natural number such that $l_i - 1 < \operatorname{ord}_{\mathfrak{g}}(f_i(\theta)) \le l_i$. Then $f_i(x)$ is irreducible mod \mathfrak{y}^{l_i} in $\mathfrak{o}[x]$.

§ 2. The following theorem shows how we can construct divisor polynomials of f(x) by means of the primitive divisor polynomials of f(x).

Theorem 1. Let r be the depth of f(x), and $f_i(x)$ an i-th primitive divisor polynomial of f(x) $(i=1, \dots, r)$. For any integer m such that $1 \le m < n$, we define uniquely a finite sequence $q_1(m), \dots, q_r(m)$ of integers by the following conditions.

$$m = \sum_{i=1}^{r} q_i(m)m_i(\theta, k), \quad and \quad 0 \leq q_i(m) < \frac{m_{i-1}(\theta, k)}{m_i(\theta, k)}, \quad (i=1, \cdots, r).$$

Then $\prod_{i=1}^{r} f_i(x)^{q_i(m)}$ is a divisor polynomial of degree m of f(x) over k.

Corollary. Let $g_m(x)$ be a divisor polynomial of degree m of f(x) over k. Put $\kappa_i = \operatorname{ord}_{\mathfrak{g}}(f_i(\theta))$ $(1 \le i \le r)$ and $\mu_m = \operatorname{ord}_{\mathfrak{g}}(g_m(\theta))$ $(1 \le m < n)$. Then we have

88

$$\sum_{m=1}^{n-1} \mu_m = \frac{n}{2} \sum_{i=1}^r \left(\frac{m_{i-1}(\theta,k)}{m_i(\theta,k)} - 1 \right) \cdot \kappa_i.$$

By this corollary and Theorem 3 in Part I, we have the following. Proposition 8. Let $D(1, \theta, \dots, \theta^{n-1})$ be the discriminant of $\mathfrak{o}[\theta]$ over \mathfrak{o} and $D(k(\theta)/k)$ the discriminant of $\mathfrak{o}_{k(\theta)}$ over \mathfrak{o} . Then we have

$$\operatorname{ord}_{\mathfrak{P}}(D(k(\theta)/k)) = f \cdot (e-1) - n \sum_{i=1}^{r} \left(\frac{m_{i-1}(\theta, k)}{m_{i}(\theta, k)} - 1 \right) \cdot \kappa_{i}$$

 $+ \operatorname{ord}_{\mathfrak{g}}(D(1, \theta, \cdots, \theta^{n-1})).$

In Part III, we will give an explicit construction of the primitive divisor polynomials from the given polynomial f(x).

Reference

 K. Okutsu: Construction of integral basis. I. Proc. Japan Acad., 58A, 47– 49 (1982).