23. On the Inducing of Unipotent Classes for Semisimple Algebraic Groups. II

Case of Classical Type

By Takeshi HIRAI

Department of Mathematics, Kyoto University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1982)

Let G be a connected semisimple algebraic group over an algebraically closed field K, and let $C' = \operatorname{Ind}_{L,P}^{g} C$ be as in the previous paper [10]. In this paper, we give a simple method to determine the induced class C' from C when G is of classical type. The idea is the same as that given in [9, §§ 4-5] to treat the Richardson classes, and based only on two well known fundamental results cited in §1. In this paper, we only assume that the characteristic p of K is zero or a good prime for G. Because of this assumption, we may work on the Lie algebra version of the inducing (for type B, C or D, using the Cayley transform in [11, 3.14] for example). Let g be the Lie algebra of G, \mathfrak{p} its parabolic subalgebra, \mathfrak{l} a Levi subalgebra and n the nilpotent radical of \mathfrak{p} . For a nilpotent class C of \mathfrak{l} , the induced class $C' = \operatorname{Ind}_{\mathfrak{l},\mathfrak{p}}^{\mathfrak{l}} C$ is defined as the unique class which intersects $C+\mathfrak{n}$ densely.

§1. We list up here two fundamental facts on unipotent or nilpotent classes, which play decisive roles in our method. Assume that G be simple from now on. Let $X \in \mathfrak{g}$ be nilpotent and put G(X)={Ad (g)X; $g \in G$ }. Then it is convenient for us to use as a parameter of the class G(X) the Jordan normal form of X. For types A_n, B_n, C_n and D_n , we put N=n+1, 2n+1, 2n and 2n respectively. Let X be conjugate under $G_A=SL(N,K)$ to $J(p_1)\oplus J(p_2)\oplus \cdots \oplus J(p_s), p_1 \ge p_2 \ge \cdots$ $\ge p_s \ge 0, p_1+p_2+\cdots+p_s=N$, where J(p) is the $p \times p$ Jordan matrix with entries 1 just above the diagonal and zero except there. We say that X and its class G(X) are both of Jordan type $\alpha = (p_1, p_2, \cdots, p_s)$, and the latter is also denoted as $O_G(\alpha)$, when α determines the class uniquely. For type D_n with n even, if all p_i 's are even, exactly two classes correspond to the same α . In this case we denote by $O_G(\alpha)$ the union of these two classes.

We realize g of type B_n , D_n or C_n as a subalgebra of $g_A = \mathfrak{Sl}(N, K)$ consisting of $X \in \mathfrak{g}_A$ such that $XJ + J^tX = 0$ for $J = L_N$ or

$$J = \begin{pmatrix} 0_n & L_n \\ -L_n & 0_n \end{pmatrix} \quad \text{with} \quad L_n = \begin{pmatrix} 0 & \cdot & 1 \\ 1 & \cdot & 1 \\ 1 & 0 \end{pmatrix} \quad (\text{type } n \times n).$$

Here 0_n denotes the zero matrix of degree n. Then,

Theorem A [11, pp. 257–258]. Let g be of type B_n or D_n (resp. of type C_n). For $X \in \mathfrak{g}_A$, let $G_A(X)$ be its conjugacy class under G_A . Then $G_A(X) \cap \mathfrak{g}$ is empty or equal to $O_G(\alpha)$ for the Jordan type α of X. It is not empty if and only if $\alpha = (p_1, p_2, \dots, p_s)$ satisfies the condition (BD1) (resp. (C1)) given below. Let $r_j = \sharp\{i; p_i = j\}$ for $j \ge 1$, then

(BD1) r_j is even for even j; and (C1) r_j is even for odd j.

We define the dual partition $\alpha^{\check{}} = [n_1, n_2, \dots, n_t]$ of α as the partition of N given by

$$n_i = r_i + r_{i+1} + \cdots + r_i \qquad (1 \leqslant i \leqslant t),$$

if $r_j=0$ for j>t. We call a Jordan type α a *G-Jordan type* if it satisfies (BD1) or (C1) according to the type of *G*. Denote by Jor_{*g*}, the set of all *G*-Jordan types (for a fixed *N*).

For a subset E of \mathfrak{g} , we denote by $\operatorname{Cl}(E)$ the (Zariski) closure of E, and by $\operatorname{Jor}_{\mathfrak{g}}(E)$ the set of G-Jordan types α (for N) such that $O_{\mathfrak{g}}(\alpha) \subset E$, and put $G(E) = \{\operatorname{Ad}(g)X; X \in E, g \in G\}$. For two G-Jordan types α, α' for N, we define $\alpha \geq_{\mathfrak{g}} \alpha'$, if $\operatorname{Cl}(O_{\mathfrak{g}}(\alpha)) \supset O_{\mathfrak{g}}(\alpha')$. If $G = G_A$, we denote $\geq_{\mathfrak{g}} \operatorname{also}$ by \geq_A . Note that $\alpha \geq_{\mathfrak{g}} \alpha'$ implies $\alpha \geq_A \alpha'$. (The converse is also true as is proved using Theorem B below. But this is not necessary in the following.) Any nilpotent class in \mathfrak{g} (under G) is open in its closure. So the relation $\geq_{\mathfrak{g}}$ is actually a partial order, and for a G-Jordan type α ,

 $\operatorname{Jor}_{G}(\operatorname{Cl}(O_{G}(\alpha))) = \{\alpha'; \alpha \geq_{G} \alpha'\} = \operatorname{Jor}_{G}(\alpha) \quad (\operatorname{put}).$

Note that $\operatorname{Jor}_{G}(\alpha)$ contains a unique maximal element α . For $G=G_{A}$, we denote $\operatorname{Jor}_{G}(\alpha)$ also by $\operatorname{Jor}_{A}(\alpha)$. Then we have $\operatorname{Jor}_{G} \cap \operatorname{Jor}_{A}(\alpha) \supset \operatorname{Jor}_{G}(\alpha)$ for a G-Jordan type α . (By the remark above, this inclusion is actually an equality.)

Theorem B [8]. Let $\alpha = (p_1, p_2, \dots, p_s)$, $\alpha' = (p'_1, p'_2, \dots, p'_{s'})$ be two Jordan types for N. Then $\alpha \geq_A \alpha'$ if and only if

 $p_1+p_2+\cdots+p_j \ge p'_1+p'_2+\cdots+p'_j$ for $j\ge 1$, where we put $p_j=0$ for j>s, and similarly for p'_j .

§2. Type A. Let $\alpha = (p_1, p_2, \dots, p_s)$ be a Jordan type for N. We call the dual partition $\alpha^* = [n_1, n_2, \dots, n_t]$ the parabolic type associated to α . Let $\delta = [d_1, d_2, \dots, d_u]$ be an ordered partition of N. Denote by $\mathfrak{l}[\delta]$ and $\mathfrak{n}[\delta]$ the subalgebras of $\mathfrak{g}_A = \mathfrak{Sl}(N, K)$ consisting of elements X of the following forms respectively:

where $x_i \in \mathfrak{gl}(d_i, K)$. Then $\mathfrak{p}[\delta] = \mathfrak{l}[\delta] + \mathfrak{n}[\delta]$ is a parabolic subalgebra called of type δ . We have $\operatorname{Cl}(O_{\mathfrak{g}_4}(\alpha)) = G_4(\mathfrak{n}[\alpha^*])$.

The subalgebra $[[\delta]$ is isomorphic to $\{(x_i) \in \prod_{1 \le i \le u} \mathfrak{g}[(d_i, K); \sum_{1 \le i \le u} \operatorname{tr} (x_i) = 0\}$, under $X \mapsto (x_i)$. By this isomorphism, a conjugacy class C in $[[\delta]$ of nilpotent elements X is parametrized by $(\beta_1, \beta_2, \dots, \beta_u)$ and denoted as $C(\beta_1, \beta_2, \dots, \beta_u)$, where β_i denotes the Jordan type (for d_i) of x_i . Let β_i° be the parabolic type associated to β_i , and denote by $\operatorname{Ind} [\beta_1^{\circ}, \beta_2^{\circ}, \dots, \beta_u^{\circ}]$ the parabolic type (for $N = d_1 + d_2 + \dots + d_u)$ obtained by simply arranging $\beta_1^{\circ}, \beta_2^{\circ}, \dots$ in this order. We have the following.

Theorem 1. Let $\mathfrak{g}=\mathfrak{g}_{\lambda}=\mathfrak{Sl}(N,K)$, and δ be a partition of N. Let $\mathfrak{p}=\mathfrak{p}[\delta]$ be the parabolic subalgebra of type δ , and put $\mathfrak{l}=\mathfrak{l}[\delta]$. Let C be a conjugacy class $C(\beta_1, \beta_2, \dots, \beta_u)$ in \mathfrak{l} with Jordan type $(\beta_1, \beta_2, \dots, \beta_u)$. Then the parabolic type of the induced class $C'=\mathrm{Ind}_{\mathfrak{l},\mathfrak{p}}^{\mathfrak{s}}C$ is given by $\mathrm{Ind} [\beta_1^{\mathfrak{s}}, \beta_2^{\mathfrak{s}}, \dots, \beta_u^{\mathfrak{s}}]$, and its Jordan type is given by $[\mathrm{Ind} [\beta_1^{\mathfrak{s}}, \beta_2^{\mathfrak{s}}, \dots, \beta_u^{\mathfrak{s}}]^{\mathfrak{s}}$.

We remark here that this theorem is also proved by T. Tanisaki.

§3. Type B, C or D. Now let G be of type B_n, C_n or D_n . Let $\gamma = (q_1, q_2, \dots, q_v)$ be any $(G_A$ -)Jordan type for $N: q_1 \ge q_2 \ge \dots \ge q_v, q_1 + q_2 + \dots + q_v = N$. We define an operation T_G on γ to get a G-Jordan type from it. For G of type B or D, we define $T_G = T_{BD}$ as follows. Let $T_{BD}\gamma = \alpha = (p_1, p_2, \dots, p_s)$.

(BDi) If q_j is odd, put $p_j = q_j$.

(BDii) Let q_j be even, and suppose p_i 's have been already defined for all l < j. Put $I = \{i; i > j, q_i = q_j\}$. (Case 1) If #I is even, then we put $p_i = q_i$ for all $i \in I$. (Case 2) Suppose #I is odd. Let k be the biggest element in I, and q_m the first even number after q_k (q_i are all odd for k < i < m). Then we put $p_k = q_k - 1$, $p_m = q_m + 1$, $p_i = q_i$ for $i \in I$, $\neq k$. Adding $q_{n+1} = 0$ if necessary, we repeat this process until the end.

If G is of type C, we define $\alpha = T_{G\gamma} = T_{c\gamma}$ by the processes (Ci) and (Cii), which are obtained from (BDi) and (BDii) by replacing *even* and *odd* in italic by *odd* and *even* respectively. Note that T_{c} is an extension of the Spaltenstein mapping in [4, p. 225] in the case of Richardson classes. The following is proved by using Theorem B.

Lemma. Let γ be any (G_A) -Jordan type for N. If $\gamma \geq_A \alpha$ for a G-Jordan type α , then $T_G \gamma \geq_A \alpha$.

For any parabolic type δ , we denote by $(T_{G} \circ \lor)\delta$ or by $\delta^{\check{}G}$ the Jordan type $T_{G}(\delta^{\check{}})$.

We call an ordered partition $\delta = [d_1, d_2, \dots, d_{2u-1}]$ of N a G-parabolic type if it satisfies $d_i = d_{2u-i}$ $(1 \le i \le u-1)$ $(d_u = 0$ is admitted). We denote it as $\delta_G = [d_1, d_2, \dots, d_{u-1}; d_u]$. We put $[[\delta_G] = \mathfrak{g} \cap \mathfrak{l}[\delta]$, $\mathfrak{n}[\delta_G] = \mathfrak{g} \cap \mathfrak{n}[\delta]$ for the subalgebras $\mathfrak{l}[\delta]$, $\mathfrak{n}[\delta]$ of \mathfrak{g}_A . Then $\mathfrak{p}[\delta_G] = \mathfrak{l}[\delta_G] + \mathfrak{n}[\delta_G]$ is a parabolic subalgebra of \mathfrak{g} , and an element $X \in \mathfrak{l}[\delta_G]$ is a blockwise diagonal matrix diag $(x_1, x_2, \dots, x_{u-1}, x_u, y_{u-1}, \dots, y_1)$, where $x_i \in \mathfrak{gl}(d_i, K)$ for $1 \le i \le u-1$,

84

 $x_u \in \mathfrak{so}(d_u, K)$ or $\in \mathfrak{sp}(d_u/2, K)$ according to the type of G, and $y_i = -L_{d_i} t_i x_i L_{d_i}$ for $1 \leq i \leq u-1$. The correspondence $X \mapsto (x_i)$ gives an isomorphism of $\mathfrak{l}[\delta_G]$ onto $\prod_{1 \leq i \leq u-1} \mathfrak{gl}(d_i, K) \times \mathfrak{so}(d_u, K)$ (or $\times \mathfrak{sp}(d_u/2, K)$ resp.). Under this isomorphism, a nilpotent class of $\mathfrak{l}[\delta_G]$ is parametrized by a system of Jordan types of x_i 's: $(\beta_1, \beta_2, \dots, \beta_{u-1}; \beta_u)$, where β_u , if $d_u \neq 0$, satisfies (BD1) or (C1) accordingly. Then we define $\operatorname{Ind} [\beta_1^{\,\circ}, \beta_2^{\,\circ}, \dots, \beta_{u-1}^{\,\circ}; \beta_u^{\,\circ}]$ as the G_A -parabolic type for N given by $\operatorname{Ind} [\beta_1^{\,\circ}, \beta_2^{\,\circ}, \dots, \beta_{u-1}^{\,\circ}, \beta_u^{\,\circ}, \beta_{u-1}^{\,\circ}, \dots, \beta_2^{\,\circ}, \beta_1^{\,\circ}]$. The following is our second main theorem.

Theorem 2. Let G be of type B_n, C_n or D_n , and $\delta_G = [d_1, d_2, \cdots, d_{u-1}; d_u]$ a G-parabolic type. Put $\mathfrak{p} = \mathfrak{p}[\delta_G]$, $\mathfrak{l} = \mathfrak{l}[\delta_G]$. For a nilpotent class C with Jordan type $(\beta_1, \beta_2, \cdots, \beta_{u-1}; \beta_u)$, let $C' = \operatorname{Ind}_{\mathfrak{l},\mathfrak{p}}^{\mathfrak{s}} C$ be its induced class. Then the Jordan type of C' is given by $(T_G \circ \vee)$ Ind $[\beta_1^{\mathfrak{s}}, \beta_2^{\mathfrak{s}}, \cdots, \beta_{u-1}^{\mathfrak{s}}; \beta_u^{\mathfrak{s}}]$.

As a consequence of this theorem, we can characterize Richardson classes and fundamental classes (those which can not be induced from $l \neq g$).

Theorem 3. Let G be of type B_n , C_n or D_n . Let C be a nilpotent class of g with G-Jordan type $\alpha = (p_1, p_2, \dots, p_i)$. (i) C is a Richardson class corresponding to the parabolic subalgebra $\mathfrak{p}[\delta_G]$ with G-parabolic type $\delta_G = [d_1, d_2, \dots, d_{u-1}; d_u]$ if and only if $\alpha = \delta^{\circ G}$ for $\delta = [d_1, d_2, \dots, d_{u-1}, d_u, d_{u-1}, \dots, d_1]$. (ii) C is fundamental if and only if the multiplicities $r_j = \#\{i; p_i = j\}$ satisfy the following: if $r_j \neq 0$, then $r_i \neq 0$ for any i < j; and $r_j \neq 2$ for j odd (resp. even) when G is of type B or D (resp. of type C).

We remark that the assertion (i) is essentially given in [4]. For the further study of Richardson classes, see [5] and also [9, §§ 4–5]. The condition on α in (ii) is exactly the condition for that α can not be expressed as β^{*a} for a partition $\beta = [b_1, b_2, \dots, b_t]$ of N with b_j not all different.

§4. Sketch of the proof of Theorem 2. We know that in $\operatorname{Jor}_{G}(\operatorname{Cl}(C'))$, there exists a unique maximal (with respect to \geq_{G}) G-Jordan type α' which corresponds to C'. On the other hand, $C_{A} = G_{A}(C)$ is a G_{A} -conjugacy class. Consider G_{A} -parabolic type δ in Theorem 3 and G_{A} -induced class $C'_{A} = \operatorname{Ind}_{\mathfrak{l}[\delta],\mathfrak{p}[\delta]}^{\mathfrak{s}}C_{A}$. Then by Theorem 1, its G_{A} -Jordan type γ is given by $\gamma = [\operatorname{Ind}[\beta_{1}^{*},\beta_{2}^{*},\cdots,\beta_{u-1}^{*};\beta_{u}^{*}]]^{*}$. Thus we see that $\operatorname{Jor}_{G} \cap \operatorname{Jor}_{A}(\gamma) \supset \operatorname{Jor}_{G}(\operatorname{Cl}(C'))$. By Lemma, the left hand side contains a unique maximal element $T_{G\gamma}$ with respect to \geq_{A} . So we have $T_{G\gamma} \geq_{A} \alpha'$.

To prove $T_{c\gamma} = \alpha'$, it is sufficient to find a nilpotent element Y with G-Jordan type $T_{c\gamma}$ from $C + \mathfrak{n}$, because $\operatorname{Cl}(C') \supset C + \mathfrak{n}$. We can choose Y by reducing the situation essentially to each simple step in the

T. HIRAI

operation T_{g} : replacement of (q_{k}, q_{m}) by $(q_{k}-1, q_{m}+1)$ (for the above $\gamma, m=k+1$ always), and then by checking each step explicitly. The detail is quite similar as the discussions in [9, §§ 4-5].

Note. I used in [5, § 4] Mizuno's result on the structure constants for type E_s in [7, Table 12], in case of type E_7 . So it would be better remarking here a complete correction to the Table 12: (1) add "+" at (12, 37) (misprint); (2) change signs at (I, J) and (J, I) for (I, J) = (32, 145), (107, 57), (38, 145), (44, 145), (112, 145), (120, 58).

References (continued from [I])

- [8] W. H. Hesselink: Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc., 222, 1-32 (1976).
- [9] T. Hirai: Structure of unipotent orbits and Fourier transform of unipotent orbital integrals for semisimple Lie groups (preprint).
- [10] ——: On the inducing of unipotent classes. I. Case of exceptional type. Proc. Japan Acad., 58A, 37-40 (1982) (cited as [I]).
- [11] T. A. Springer and R. Steinberg: Conjugacy classes. In Seminar on Algebraic Groups and Related Finite Groups. Lect. Notes in Math., vol. 131, Springer-Verlag, pp. 167-266 (1959).