23. On the Inducing of Unipotent Classes for Semisimple Algebraic Groups. II

Case of Classical Type

By Takeshi Hirai
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1982)

Let G be a connected semisimple algebraic group over an algebraically closed field K, and let $C^{\prime}=\operatorname{Ind}_{L, P}^{G} C$ be as in the previous paper [10]. In this paper, we give a simple method to determine the induced class C^{\prime} from C when G is of classical type. The idea is the same as that given in $[9, \S \S 4-5]$ to treat the Richardson classes, and based only on two well known fundamental results cited in §1. In this paper, we only assume that the characteristic p of K is zero or a good prime for G. Because of this assumption, we may work on the Lie algebra version of the inducing (for type B, C or D, using the Cayley transform in [11, 3.14] for example). Let \mathfrak{g} be the Lie algebra of G, \mathfrak{p} its parabolic subalgebra, \mathfrak{l} a Levi subalgebra and \mathfrak{n} the nilpotent radical of \mathfrak{p}. For a nilpotent class C of \mathfrak{r}, the induced class $C^{\prime}=\operatorname{Ind}_{\mathfrak{q}, \mathfrak{p}} C$ is defined as the unique class which intersects $C+\mathfrak{n}$ densely.
§1. We list up here two fundamental facts on unipotent or nilpotent classes, which play decisive roles in our method. Assume that G be simple from now on. Let $X \in g$ be nilpotent and put $G(X)$ $=\{\operatorname{Ad}(g) X ; g \in G\}$. Then it is convenient for us to use as a parameter of the class $G(X)$ the Jordan normal form of X. For types A_{n}, B_{n}, C_{n} and D_{n}, we put $N=n+1,2 n+1,2 n$ and $2 n$ respectively. Let X be conjugate under $G_{A}=S L(N, K)$ to $J\left(p_{1}\right) \oplus J\left(p_{2}\right) \oplus \cdots \oplus J\left(p_{s}\right), p_{1} \geqslant p_{2} \geqslant \cdots$ $\geqslant p_{s} \geqslant 0, p_{1}+p_{2}+\cdots+p_{s}=N$, where $J(p)$ is the $p \times p$ Jordan matrix with entries 1 just above the diagonal and zero except there. We say that X and its class $G(X)$ are both of Jordan type $\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right)$, and the latter is also denoted as $O_{G}(\alpha)$, when α determines the class uniquely. For type D_{n} with n even, if all p_{i} 's are even, exactly two classes correspond to the same α. In this case we denote by $O_{G}(\alpha)$ the union of these two classes.

We realize g of type B_{n}, D_{n} or C_{n} as a subalgebra of $g_{A}=\mathscr{L l}(N, K)$ consisting of $X \in g_{A}$ such that $X J+J^{t} X=0$ for $J=L_{N}$ or

$$
J=\left(\begin{array}{rr}
0_{n} & L_{n} \\
-L_{n} & 0_{n}
\end{array}\right) \quad \text { with } \quad L_{n}=\left(\begin{array}{ll}
0 & . \\
1 & . \\
1 & \\
& 0
\end{array}\right) \quad(\text { type } n \times n) .
$$

Here 0_{n} denotes the zero matrix of degree n. Then,
Theorem A [11, pp. 257-258]. Let g be of type B_{n} or D_{n} (resp. of type C_{n}). For $X \in \mathfrak{g}_{A}$, let $G_{A}(X)$ be its conjugacy class under G_{A}. Then $G_{A}(X) \cap g$ is empty or equal to $O_{G}(\alpha)$ for the Jordan type α of X. It is not empty if and only if $\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right)$ satisfies the condition (BD1) (resp. (C1)) given below. Let $r_{j}=\sharp\left\{i ; p_{i}=j\right\}$ for $j \geqslant 1$, then
(BD1) r_{j} is even for even j; and (C1) r_{j} is even for odd j.
We define the dual partition $\alpha^{2}=\left[n_{1}, n_{2}, \cdots, n_{t}\right]$ of α as the partition of N given by

$$
n_{i}=r_{i}+r_{i+1}+\cdots+r_{t} \quad(1 \leqslant i \leqslant t),
$$

if $r_{j}=0$ for $j>t$. We call a Jordan type α a G-Jordan type if it satisfies (BD1) or (C1) according to the type of G. Denote by Jor ${ }_{\sigma}$. the set of all G-Jordan types (for a fixed N).

For a subset E of g, we denote by $\mathrm{Cl}(E)$ the (Zariski) closure of E, and by $\operatorname{Jor}_{G}(E)$ the set of G-Jordan types α (for N) such that $O_{G}(\alpha)$ $\subset E$, and put $G(E)=\{\operatorname{Ad}(g) X ; X \in E, g \in G\}$. For two G-Jordan types α, α^{\prime} for N, we define $\alpha \succcurlyeq_{G} \alpha^{\prime}$, if $\mathrm{Cl}\left(O_{G}(\alpha)\right) \supset O_{G}\left(\alpha^{\prime}\right)$. If $G=G_{A}$, we denote \succcurlyeq_{G} also by \succcurlyeq_{A}. Note that $\alpha \succcurlyeq_{G} \alpha^{\prime}$ implies $\alpha \succcurlyeq_{A} \alpha^{\prime}$. (The converse is also true as is proved using Theorem B below. But this is not necessary in the following.) Any nilpotent class in g (under G) is open in its closure. So the relation \succcurlyeq_{G} is actually a partial order, and for a G-Jordan type α,

$$
\operatorname{Jor}_{G}\left(\mathrm{Cl}\left(O_{G}(\alpha)\right)\right)=\left\{\alpha^{\prime} ; \alpha \succcurlyeq_{G} \alpha^{\prime}\right\}=\operatorname{Jor}_{G}(\alpha) \quad \text { (put). }
$$

Note that $\operatorname{Jor}_{G}(\alpha)$ contains a unique maximal element α. For $G=G_{A}$, we denote $\operatorname{Jor}_{\theta}(\alpha)$ also by $\operatorname{Jor}_{A}(\alpha)$. Then we have $\operatorname{Jor}_{G} \cap \operatorname{Jor}_{A}(\alpha)$ $\supset \operatorname{Jor}_{G}(\alpha)$ for a G-Jordan type α. (By the remark above, this inclusion is actually an equality.)

Theorem B [8]. Let $\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right), \alpha^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{s_{s}^{\prime}}^{\prime}\right)$ be two Jordan types for N. Then $\alpha \succcurlyeq_{A} \alpha^{\prime}$ if and only if

$$
p_{1}+p_{2}+\cdots+p_{j} \geqslant p_{1}^{\prime}+p_{2}^{\prime}+\cdots+p_{j}^{\prime} \quad \text { for } j \geqslant 1
$$

where we put $p_{j}=0$ for $j>s$, and similarly for p_{j}^{\prime}.
§2. Type A. Let $\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right)$ be a Jordan type for N. We call the dual partition $\alpha^{2}=\left[n_{1}, n_{2}, \cdots, n_{t}\right]$ the parabolic type associated to α. Let $\delta=\left[d_{1}, d_{2}, \cdots, d_{u}\right]$ be an ordered partition of N. Denote by $\mathfrak{[}[\delta]$ and $\mathfrak{n}[\delta]$ the subalgebras of $g_{A}=\mathfrak{Z l}(N, K)$ consisting of elements X of the following forms respectively:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
x_{1} & \\
x_{2} & \\
0 & \ddots & \\
0 & \ddots & x_{a}
\end{array}\right), \\
& \left(\begin{array}{cccc}
0^{a_{4}} & & & \\
0_{4} & & \\
0 & \ddots & \ddots & \\
0 & & 0_{a 4}
\end{array}\right)
\end{aligned}
$$

where $x_{i} \in \mathfrak{g l}\left(d_{i}, K\right)$. Then $\mathfrak{p}[\delta]=\mathfrak{l}[\delta]+\mathfrak{n}[\delta]$ is a parabolic subalgebra called of type δ. We have $\mathrm{Cl}\left(O_{G_{A}}(\alpha)\right)=G_{A}\left(\mathfrak{n}\left[\alpha^{\vee}\right]\right)$.

The subalgebra $\mathfrak{[} \delta]$ is isomorphic to $\left\{\left(x_{i}\right) \in \prod_{1 \leqslant i \leqslant u} \mathfrak{g l}\left(d_{i}, K\right)\right.$; $\left.\sum_{1 \leqslant i \leqslant u} \operatorname{tr}\left(x_{i}\right)=0\right\}$, under $X \mapsto\left(x_{i}\right)$. By this isomorphism, a conjugacy class C in $\left\lceil[\delta]\right.$ of nilpotent elements X is parametrized by $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u}\right)$ and denoted as $C\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u}\right)$, where β_{i} denotes the Jordan type (for d_{i}) of x_{i}. Let β_{i}^{v} be the parabolic type associated to β_{i}, and denote by Ind $\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots, \beta_{u}^{\vee}\right]$ the parabolic type (for $N=d_{1}+d_{2}+\cdots+d_{u}$) obtained by simply arranging $\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots$ in this order. We have the following.

Theorem 1. Let $\mathfrak{g}=\mathfrak{g}_{A}=\mathfrak{g r}(N, K)$, and δ be a partition of N. Let $\mathfrak{p}=\mathfrak{p}[\delta]$ be the parabolic subalgebra of type δ, and put $\mathfrak{Y}=\mathfrak{Y}[\delta]$. Let C be a conjugacy class $C\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u}\right)$ in \mathfrak{Y} with Jordan type $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u}\right)$. Then the parabolic type of the induced class $C^{\prime}=\operatorname{Ind}_{\mathfrak{l}, \mathfrak{p}}^{\mathfrak{q}} C$ is given by Ind $\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots, \beta_{u}^{\vee}\right]$, and its Jordan type is given by $\left[\operatorname{Ind}\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots\right.\right.$, $\left.\left.\beta_{u}^{\vee}\right]\right]^{\nu}$.

We remark here that this theorem is also proved by T. Tanisaki.
§3. Type B, C or D. Now let G be of type B_{n}, C_{n} or D_{n}. Let $\gamma=\left(q_{1}, q_{2}, \cdots, q_{v}\right)$ be any (G_{4}-) Jordan type for $N: q_{1} \geqslant q_{2} \geqslant \cdots \geqslant q_{v}, q_{1}$ $+q_{2}+\cdots+q_{v}=N$. We define an operation T_{G} on γ to get a G-Jordan type from it. For G of type B or D, we define $T_{G}=T_{B D}$ as follows. Let $T_{B D} \gamma=\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right)$.
(BDi) If q_{j} is odd, put $p_{j}=q_{j}$.
(BDii) Let q_{j} be even, and suppose p_{l} 's have been already defined for all $l<j$. Put $I=\left\{i ; i>j, q_{i}=q_{j}\right\}$. (Case 1) If $\# I$ is even, then we put $p_{i}=q_{i}$ for all $i \in I$. (Case 2) Suppose $\# I$ is odd. Let k be the biggest element in I, and q_{m} the first even number after $q_{k}\left(q_{i}\right.$ are all odd for $k<i<m)$. Then we put $p_{k}=q_{k}-1, p_{m}=q_{m}+1, p_{i}=q_{i}$ for $i \in I, \neq k$. Adding $q_{v+1}=0$ if necessary, we repeat this process until the end.

If G is of type C, we define $\alpha=T_{G} \gamma=T_{c \gamma}$ by the processes (Ci) and (Cii), which are obtained from (BDi) and (BDii) by replacing even and odd in italic by odd and even respectively. Note that T_{G} is an extension of the Spaltenstein mapping in [4, p. 225] in the case of Richardson classes. The following is proved by using Theorem B.

Lemma. Let γ be any $\left(G_{A}-\right)$ Jordan type for N. If $\gamma \geqslant{ }_{A} \alpha$ for a G-Jordan type α, then $T_{G} \gamma \geqslant_{A} \alpha$.

For any parabolic type δ, we denote by $\left(T_{G} \circ \vee\right) \delta$ or by δ^{\vee} the Jordan type $T_{G}\left(\delta^{\vee}\right)$.

We call an ordered partition $\delta=\left[d_{1}, d_{2}, \cdots, d_{2 u-1}\right]$ of N a G-parabolic type if it satisfies $d_{i}=d_{2 u-i}(1 \leqslant i \leqslant u-1)\left(d_{u}=0\right.$ is admitted $)$. We denote it as $\delta_{G}=\left[d_{1}, d_{2}, \cdots, d_{u-1} ; d_{u}\right]$. We put $\left.\left.\mathfrak{[} \delta_{G}\right]=\mathfrak{g} \cap \mathfrak{C} \delta\right], \mathfrak{n}\left[\delta_{G}\right]=\mathfrak{g} \cap \mathfrak{n}[\delta]$ for
 subalgebra of g , and an element $X \in \mathfrak{K}\left[\delta_{G}\right]$ is a blockwise diagonal matrix $\operatorname{diag}\left(x_{1}, x_{2}, \cdots, x_{u-1}, x_{u}, y_{u-1}, \cdots, y_{1}\right)$, where $x_{i} \in \mathfrak{g l}\left(d_{i}, K\right)$ for $1 \leqslant i \leqslant u-1$,
$x_{u} \in \mathfrak{g n}\left(d_{u}, K\right)$ or $\in \mathfrak{Z p}\left(d_{u} / 2, K\right)$ according to the type of G, and y_{i} $=-L_{d_{i}}{ }^{t} x_{i} L_{d_{i}}$ for $1 \leqslant i \leqslant u-1$. The correspondence $X_{\mapsto}\left(x_{i}\right)$ gives an isomorphism of $\mathfrak{[}\left[\delta_{G}\right]$ onto $\prod_{1 \leqslant i \leqslant u-1} \mathfrak{g l}\left(d_{i}, K\right) \times \mathfrak{g o}\left(d_{u}, K\right)\left(\right.$ or $\times \mathfrak{z q}\left(d_{u} / 2, K\right)$ resp.). Under this isomorphism, a nilpotent class of $\left.\mathfrak{[} \delta_{G}\right]$ is parametrized by a system of Jordan types of x_{i} 's: $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u-1} ; \beta_{u}\right)$, where β_{u}, if $d_{u} \neq 0$, satisfies (BD1) or (C1) accordingly. Then we define Ind $\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots, \beta_{u-1}^{\vee} ; \beta_{u}^{\vee}\right]$ as the G_{A}-parabolic type for N given by Ind $\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots, \beta_{u-1}^{\vee}, \beta_{u}^{\vee}, \beta_{u-1}^{\vee}, \cdots, \beta_{2}^{\vee}, \beta_{1}^{\vee}\right]$. The following is our second main theorem.

Theorem 2. Let G be of type B_{n}, C_{n} or D_{n}, and $\delta_{G}=\left[d_{1}, d_{2}, \cdots\right.$, $\left.d_{u-1} ; d_{u}\right]$ a G-parabolic type. Put $\mathfrak{p}=\mathfrak{p}\left[\delta_{G}\right], \mathfrak{r}=\mathfrak{r}\left[\delta_{G}\right]$. For a nilpotent class C with Jordan type $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{u-1} ; \beta_{u}\right)$, let $C^{\prime}=\operatorname{Ind}_{\substack{\mathrm{p}, p}} C$ be its induced class. Then the Jordan type of C^{\prime} is given by ($T_{G} \circ \vee$) Ind $\left[\beta_{1}^{\vee}\right.$, $\left.\beta_{2}^{\vee}, \cdots, \beta_{u-1}^{\vee} ; \beta_{u}^{\vee}\right]$.

As a consequence of this theorem, we can characterize Richardson classes and fundamental classes (those which can not be induced from $\mathfrak{l} \neq \mathrm{g})$.

Theorem 3. Let G be of type B_{n}, C_{n} or D_{n}. Let C be a nilpotent class of g with G-Jordan type $\alpha=\left(p_{1}, p_{2}, \cdots, p_{s}\right)$. (i) C is a Richardson class corresponding to the parabolic subalgebra $\mathfrak{p}\left[\delta_{G}\right]$ with G-parabolic type $\delta_{G}=\left[d_{1}, d_{2}, \cdots, d_{u-1} ; d_{u}\right]$ if and only if $\alpha=\delta^{\vee}$ for $\delta=\left[d_{1}, d_{2}, \cdots\right.$, $\left.d_{u-1}, d_{u}, d_{u-1}, \cdots, d_{1}\right]$. (ii) C is fundamental if and only if the multiplicities $r_{j}=\sharp\left\{i ; p_{i}=j\right\}$ satisfy the following: if $r_{j} \neq 0$, then $r_{i} \neq 0$ for any $i<j$; and $r_{j} \neq 2$ for j odd (resp. even) when G is of type B or D (resp. of type C).

We remark that the assertion (i) is essentially given in [4]. For the further study of Richardson classes, see [5] and also [9, §§4-5]. The condition on α in (ii) is exactly the condition for that α can not be expressed as β^{\vee} for a partition $\beta=\left[b_{1}, b_{2}, \cdots, b_{t}\right]$ of N with b_{j} not all different.
§4. Sketch of the proof of Theorem 2. We know that in $\mathrm{Jor}_{G}\left(\mathrm{Cl}\left(C^{\prime}\right)\right.$), there exists a unique maximal (with respect to $\left.\succcurlyeq_{G}\right) G$ Jordan type α^{\prime} which corresponds to C^{\prime}. On the other hand, $C_{A}=G_{A}(C)$ is a G_{A}-conjugacy class. Consider G_{A}-parabolic type δ in Theorem 3 and G_{A}-induced class $C_{A}^{\prime}=\operatorname{Ind}_{[[\delta], p[\delta]}^{8} C_{A}$. Then by Theorem 1, its $G_{A^{-}}$ Jordan type γ is given by $\gamma=\left[\operatorname{Ind}\left[\beta_{1}^{\vee}, \beta_{2}^{\vee}, \cdots, \beta_{u-1}^{\vee} ; \beta_{u}^{\vee}\right]\right]^{\vee}$. Thus we see that $\mathrm{Jor}_{G} \cap \mathrm{Jor}_{A}(\gamma) \supset \operatorname{Jor}_{G}\left(\mathrm{Cl}\left(C^{\prime}\right)\right)$. By Lemma, the left hand side contains a unique maximal element $T_{G} r$ with respect to \succcurlyeq_{A}. So we have $T_{G} r \succcurlyeq_{A} \alpha^{\prime}$.

To prove $T_{G} \gamma=\alpha^{\prime}$, it is sufficient to find a nilpotent element Y with G-Jordan type $T_{a} \gamma$ from $C+\mathfrak{n}$, because $\mathrm{Cl}\left(C^{\prime}\right) \supset C+\mathfrak{n}$. We can choose Y by reducing the situation essentially to each simple step in the
operation $T_{G}:$ replacement of $\left(q_{k}, q_{m}\right)$ by $\left(q_{k}-1, q_{m}+1\right)$ (for the above $\gamma, m=k+1$ always), and then by checking each step explicitly. The detail is quite similar as the discussions in [9, §§4-5].

Note. I used in [5, §4] Mizuno's result on the structure constants for type E_{8} in [7, Table 12], in case of type E_{7}. So it would be better remarking here a complete correction to the Table 12: (1) add "+" at (12, 37) (misprint) ; (2) change signs at (I, J) and (J, I) for $(I, J)=(32,145),(107,57),(38,145),(44$, $145)$, $(112,145)$, $(120,58)$.

References (continued from [I])

[8] W. H. Hesselink: Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc., 222, 1-32 (1976).
[9] T. Hirai: Structure of unipotent orbits and Fourier transform of unipotent orbital integrals for semisimple Lie groups (preprint).
[10] --: On the inducing of unipotent classes. I. Case of exceptional type. Proc. Japan Acad., 58A, 37-40 (1982) (cited as [I]).
[11] T. A. Springer and R. Steinberg: Conjugacy classes. In Seminar on Algebraic Groups and Related Finite Groups. Lect. Notes in Math., vol. 131, Springer-Verlag, pp. 167-266 (1959).

