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1o Introduction and the statements of the main results. Let
f: C+x, 0C, 0 be a germ of holomorphie unction at 0 e C+ with
an isolated critical point. Due to Milnor [2], for r and e sufficiently
small with 0e<<r << 1, the restriction

f: {x e C"+’ ix]<r} n {Ifl=} >{t e C: Itl-}
of f defines a fibration whose general fiber F is a bouquet of n-spheres
so that the middle homology group H,(F, Z) is nonvanishing.

Using Poincar6 duality H,(F, Z)_H"(F, F, Z), one gets an inter-
section form <, > H,(F, Z) H,(F, Z)-.Z, which is symmetric or skew-
symmetric according as n is even or odd.

For a computation of the intersection form, we used in [3] the
following fact.

Theorem 1. A complex valued bilinear form B on H,(F, Z)(R)C
is a constant multiple of the intersection form if B is invariant under
the total monodromy group action on H,(F,Z), except for the case
when f at 0 is nondegenerate (i.e. ordinary double point) and n is odd.
Here the total monodromy group is by definition the image of the
fundamental group of the complement of the discriminant loci of a
universal unfolding of f.

Since this act seems still not generally well-known, we publish
it here with a proof separately rom [3]. In 2 we give a somewhat
abstract lemma characterizing invariant bilinear orms.

2. The uniqueness lemma for an invariant bilinear form. Let
V be a vector space over a field k with ch k=2 and let <, > V xVk
be a k-bilinear form which is either symmetric or skew-symmetric.

Let A be a subset of V. In case <, > is symmetric, we assume
<e, e> =2 for all e e A. Let us associate the graph F(A) to such A as
follows. The set of vertices of F(A)is in a one-to-one correspondence
to A so that we identify them. Two vertices e and e’ of A are con-
nected by a 1-simplex if and only if <e, e’> =0.

Let W(A) be the subgroup of GL(V) generated by the set of re-
flexions a, for e e A, where

a(u) --u-<u, e)e for u e V.
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One checks easily that the group W(A) leaves the form (,) invariant.
Now we formulate our lemma.

Lemma 2. Assume that i) the graph F(A) is connected and that
ii) V is generated by the elements of A over k. Then a bilinear form
B" V V--.k is a constant multiple of (, }, if it is invariant under the
action of W, i.e.

B(u, v)----B(wu, wv) for vu, v e V, vw e W,
except for the case when #A 1 and (, } is skew-symmetric.

Proof. For e e A, the relation B(u, v)= B(au, av) implies the
relation

1) (u, eB(e, v)+(v, eB(u, e)--(u, e(v, e}B(e, e)--O
or all u, v e V.

The assumptions on A in the lemma imply the existence of e’ e A
such that (e’, e} =/=0. By taking v in 1) to be e’ we get the ormula

2) B(u, e)= (e’, e}-{(e’, e}B(e, e)--B(e, e’)}(u, e}.
In other words, for any e e A, there exists a constant a(e) e k such

that
2)’ B(u, e)=a(e)(u, e} Jor all u e V.
An analogous computation shows also that for a-ny e e A, there

exists a constant fl(e) e k such that
3) B(e, v)=fl(e)(e, v} or all v e V.
Let us check that a(e)=fl(e) for any e e A.

If (,) is symmetric, it follows from the acts B(e,e)=a(e)(e,e}
----fl(e)(e, e} and (e, e)=2. If (,) is skew-symmetric B(e, e)=a(e)(e, e)
=0. Then substituting 2)’ and 3) in 1), we obtain (u, e}(v, e}(-fl(e)
+a(e)) 0 vu, v, which implies a(e) fl(e).

For e and e’ e A let us compute B(e’, e)-- a(e)(e’, e}-fl(e’)(e’, e}.
If e and e’ are combined in F(A) i.e. (e’, e} =/=0 then one gets

a(e)=(e’).
Since F(A) is connected (assumption i)), a(e)=fl(e) is a constant. e k independent o e e A. The second assumption that A generates
V then implies that

B(u, v)=r(u, v} for all u, v e V. Q.E.D.
:. A proof of Theorem 1. In Lemma 2, take V to be H(F, Z)

(R)C and take (--1)n(n-)/2 (, } tO be the intersection form.
Let A---(e,..., e} be a strongly distinguished basis of H(F, Z)

which automatically satisfies the condition ii) of Lemma 2 (cf. Ap-
pendix of Brieskorn [1]). The condition i) of Lemma 2 is also auto-
matically satisfied, since the discriminant of a universal unfolding of
f is irreducible, and its generic singularity is a cusp of (2, 3) type.
The Picard-Lefschetz formula says that W(A) is the total monodromy
group.



No. 2] The Intersection Form o a Milnor’s Fiber 81

The exceptional case in Lemma 2 corresponds to the exceptional
case in Theorem 1.

The author is grateful to M. Saito who asked to publish this result.
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