22. A Characterization of the Intersection Form of a Milnor's Fiber for a Function with an Isolated Critical Point

By Kyoji Saito
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko Kodaira, m. J. A., Feb. 12, 1982)
§ 1. Introduction and the statements of the main results. Let $f: \boldsymbol{C}^{n+1}, 0 \rightarrow \boldsymbol{C}, 0$ be a germ of a holomorphic function at $0 \in \boldsymbol{C}^{n+1}$ with an isolated critical point. Due to Milnor [2], for r and ε sufficiently small with $0<\varepsilon \ll r \ll 1$, the restriction

$$
f:\left\{x \in C^{n+1}:|x|<r\right\} \cap\{|f|=\varepsilon\} \longrightarrow\{t \in C:|t|=\varepsilon\}
$$

of f defines a fibration whose general fiber F is a bouquet of n-spheres so that the middle homology group $H_{n}(F, Z)$ is nonvanishing.

Using Poincaré duality $H_{n}(F, Z) \simeq H^{n}(F, \partial F, Z)$, one gets an intersection form $\langle\rangle:, H_{n}(F, Z) \times H_{n}(F, Z) \rightarrow Z$, which is symmetric or skewsymmetric according as n is even or odd.

For a computation of the intersection form, we used in [3] the following fact.

Theorem 1. A complex valued bilinear form B on $H_{n}(\boldsymbol{F}, \boldsymbol{Z}) \otimes \boldsymbol{C}$ is a constant multiple of the intersection form if B is invariant under the total monodromy group action on $H_{n}(F, Z)$, except for the case when f at 0 is nondegenerate (i.e. ordinary double point) and n is odd. Here the total monodromy group is by definition the image of the fundamental group of the complement of the discriminant loci of a universal unfolding of f.

Since this fact seems still not generally well-known, we publish it here with a proof separately from [3]. In § 2 we give a somewhat abstract lemma characterizing invariant bilinear forms.
§2. The uniqueness lemma for an invariant bilinear form. Let V be a vector space over a field k with ch $k \neq 2$ and let $\langle\rangle:, V \times V \rightarrow k$ be a k-bilinear form which is either symmetric or skew-symmetric.

Let A be a subset of V. In case \langle,$\rangle is symmetric, we assume$ $\langle e, e\rangle=2$ for all $e \in A$. Let us associate the $\operatorname{graph} \Gamma(A)$ to $\operatorname{such} A$ as follows. The set of vertices of $\Gamma(A)$ is in a one-to-one correspondence to A so that we identify them. Two vertices e and e^{\prime} of A are connected by a 1 -simplex if and only if $\left\langle e, e^{\prime}\right\rangle \neq 0$.

Let $W(A)$ be the subgroup of $G L(V)$ generated by the set of reflexions σ_{e} for $e \in A$, where

$$
\sigma_{e}(u):=u-\langle u, e\rangle e \quad \text { for } u \in V
$$

One checks easily that the group $W(A)$ leaves the form \langle,$\rangle invariant.$ Now we formulate our lemma.

Lemma 2. Assume that i) the graph $\Gamma(A)$ is connected and that ii) V is generated by the elements of A over k. Then a bilinear form $B: V \times V \rightarrow k$ is a constant multiple of \langle,$\rangle , if it is invariant under the$ action of W, i.e.

$$
B(u, v)=B(w u, w v) \quad \text { for } \forall u, v \in V, \forall w \in W,
$$

except for the case when $\# A=1$ and \langle,$\rangle is skew-symmetric.$
Proof. For $e \in A$, the relation $B(u, v)=B\left(\sigma_{e} u, \sigma_{e} v\right)$ implies the relation

1) $\langle u, e\rangle B(e, v)+\langle v, e\rangle B(u, e)-\langle u, e\rangle\langle v, e\rangle B(e, e)=0$ for all $u, v \in V$.
The assumptions on A in the lemma imply the existence of $e^{\prime} \in A$ such that $\left\langle e^{\prime}, e\right\rangle \neq 0$. By taking v in 1) to be e^{\prime} we get the formula
2) $B(u, e)=\left\langle e^{\prime}, e\right\rangle^{-1}\left\{\left\langle e^{\prime}, e\right\rangle B(e, e)-B\left(e, e^{\prime}\right)\right\}\langle u, e\rangle$.

In other words, for any $e \in A$, there exists a constant $\alpha(e) \in k$ such that
2) $\quad B(u, e)=\alpha(e)\langle u, e\rangle \quad$ for all $u \in V$.

An analogous computation shows also that for any $e \in A$, there exists a constant $\beta(e) \in k$ such that
3) $B(e, v)=\beta(e)\langle e, v\rangle \quad$ for all $v \in V$.

Let us check that $\alpha(e)=\beta(e)$ for any $e \in A$.
If \langle,$\rangle is symmetric, it follows from the facts B(e, e)=\alpha(e)\langle e, e\rangle$ $=\beta(e)\langle e, e\rangle$ and $\langle e, e\rangle=2$. If \langle,$\rangle is skew-symmetric B(e, e)=\alpha(e)\langle e, e\rangle$ $=0$. Then substituting 2) and 3) in 1), we obtain $\langle u, e\rangle\langle v, e\rangle(-\beta(e)$ $+\alpha(e))=0 \forall u, v$, which implies $\alpha(e)=\beta(e)$.

For e and $e^{\prime} \in A$ let us compute $B\left(e^{\prime}, e\right)=\alpha(e)\left\langle e^{\prime}, e\right\rangle=\beta\left(e^{\prime}\right)\left\langle e^{\prime}, e\right\rangle$. If e and e^{\prime} are combined in $\Gamma(A)$ i.e. $\left\langle e^{\prime}, e\right\rangle \neq 0$ then one gets

$$
\alpha(e)=\beta\left(e^{\prime}\right) .
$$

Since $\Gamma(A)$ is connected (assumption i)), $\alpha(e)=\beta(e)$ is a constant $\gamma \in k$ independent of $e \in A$. The second assumption that A generates V then implies that

$$
B(u, v)=\gamma\langle u, v\rangle \quad \text { for all } u, v \in V . \quad \text { Q.E.D. }
$$

§3. A proof of Theorem 1. In Lemma 2, take V to be $H_{n}(F, Z)$ $\otimes C$ and take $(-1)^{n(n-1) / 2}\langle$,$\rangle to be the intersection form.$

Let $A=\left\{e_{1}, \cdots, e_{\mu}\right\}$ be a strongly distinguished basis of $H_{n}(F, Z)$ which automatically satisfies the condition ii) of Lemma 2 (cf. Appendix of Brieskorn [1]). The condition i) of Lemma 2 is also automatically satisfied, since the discriminant of a universal unfolding of f is irreducible, and its generic singularity is a cusp of (2,3) type. The Picard-Lefschetz formula says that $W(A)$ is the total monodromy group.

The exceptional case in Lemma 2 corresponds to the exceptional case in Theorem 1.

The author is grateful to M. Saito who asked to publish this result.

References

[1] Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta math., 2, 103-160 (1970).
[2] Milnor, J.: Singular points of complex hypersurfaces. Ann. of Math. Studies, No. 61, Princeton (1968).
[3] Saito, K.: On periods of primitive integrals. Harvard (1980) (preprint).

