## 21. C<sub>1</sub>-Metrics on Spheres

By Kazuyoshi KIYOHARA

Department of Mathematics, Hokkaido University

(Communicated by Kunihiko Kodaira, M. J. A., Feb. 12, 1982)

1. Let (M,g) be a riemannian manifold. Then we call g a  $C_t$ -metric if all of its geodesics are closed and have the common length l. As is well-known, the standard metric on the unit sphere  $S^n$  is a  $C_{2\pi}$ -metric. Suppose  $\{g_t\}$  is a one-parameter family of  $C_{2\pi}$ -metrics on  $S^n$  such that  $g_0$  is the standard one. Put

$$\frac{d}{dt}g_t|_{t=0}=h.$$

We call such a symmetric 2-form h an infinitesimal deformation. It is known that each infinitesimal deformation h satisfies

(\*) 
$$\int_0^{2\pi} h(\dot{\gamma}(s), \dot{\gamma}(s)) ds = 0$$

for any geodesic  $\gamma(s)$  of  $(S^n, g_0)$  parametrized by arc-length (cf. [1] p. 151). V. Guillemin has proved in [2] that in the case of  $S^2$  the condition (\*) is also sufficient for a symmetric 2-form h to be an infinitesimal deformation.

The purpose of this note is to show that the situation is completely different in the case of  $S^n$   $(n \ge 3)$ . We shall give another necessary condition for a symmetric 2-form h to be an infinitesimal deformation (Theorem 1). And we shall give a partial result for what h satisfies this condition (Propositions 2, 3).

2. We denote by  $\mathcal{K}_2$  the vector space of symmetric 2-forms on  $S^n$  which satisfy (\*). Let  $\sharp: T^*S^n \to TS^n$  be the bundle isomorphism defined by

$$g_0(\sharp(\lambda),v)=\lambda(v),\quad \lambda\in T_x^*S^n,\quad v\in T_xS^n,\quad x\in S^n.$$

Let  $E_0$  be the function on  $T^*S^n$  such that

$$E_{\scriptscriptstyle 0}(\lambda)\!=\!rac{1}{2}g_{\scriptscriptstyle 0}(\sharp(\lambda),\ \sharp(\lambda)), \qquad \lambda\in T^*S^n.$$

Consider the usual symplectic structure on  $T^*S^n$ , and let  $X_{E_0}$  be the symplectic vector field on  $T^*S^n$  defined by the hamiltonian  $E_0$ .  $E_0$  and  $X_{E_0}$  are called the energy function and the geodesic flow associated with the metric  $g_0$  respectively. We denote by  $\{\xi_t\}$  the one-parameter group of transformations of  $T^*S^n$  generated by  $X_{E_0}$ . Then  $\{\xi_t\}$  induces a free  $S^1$ -action of period  $2\pi$  on the unit cotangent bundle  $S^*S^n$ . We define an operator  $G: C^{\infty}(S^*S^n) \to C^{\infty}(S^*S^n)$  by

$$G(f)(\lambda) = rac{1}{2\pi} \int_0^{2\pi} f(\xi_t \lambda) dt, \quad \lambda \in S^*S^n, \quad f \in C^{\infty}(S^*S^n).$$

Let  $\widetilde{\mathcal{H}}_2$  be the vector space of functions on  $T^*S^n$  which are quadratic forms on each fibre  $T_x^*S^n$   $(x \in S^n)$ , and let  $\mathcal{H}_2$  be the vector space of functions on  $S^*S^n$  which are the restrictions of elements of  $\widetilde{\mathcal{H}}_2$  onto  $S^*S^n$ . For each  $h \in \mathcal{H}_2$  we define a function  $\hat{h}$  on  $T^*S^n$  by

$$\hat{h}(\lambda) = h(\sharp(\lambda), \sharp(\lambda)), \qquad \lambda \in T^*S^n.$$

Moreover, let X(h) be a homogeneous symplectic vector field on  $T^*S^n\setminus\{0\text{-section}\}$  such that  $X(h)E_0=\hat{h}$ . We should remark that X(h) exists for any  $h\in\mathcal{K}_2$ , but is not unique. We now define a symmetric bilinear map  $F:\mathcal{K}_2\times\mathcal{K}_2\to C^\infty(S^*S^n)$  by

$$F(f,h)=G(X(f)\hat{h}), f, h \in \mathcal{K}_2.$$

It is easy to see that F is well-defined and is symmetric.

Then our first result is

Theorem 1. Let  $\{g_t\}$  be a one-parameter family of  $C_{2\pi}$ -metrics on  $S^n$  with  $g_0$  being the standard one. Put  $(d/dt)g_t|_{t=0}=h$ . Then we have  $F(h,h) \in G(\mathcal{H}_2)$ .

Remark. For  $S^2$  it is known that  $G(C^{\infty}(S^2)E_0) = G(\mathcal{H}_2) = \text{Image of } G$ . Thus the assertion of Theorem 1 has no meaning in this case.

The proof of Theorem 1 is based on the following lemma which is due to A. Weinstein (cf. [1] p. 122).

**Lemma.** Let  $\{g_t\}$  be as before, and let  $\{E_t\}$  be the corresponding energy functions. Then there is a one-parameter family of homogeneous symplectic diffeomorphisms  $\{\phi_t\}$  of  $T^*S^n\setminus\{0\text{-section}\}$  such that  $\phi_0=identity$  and  $\phi_t^*E_0=E_t$ .

After differentiating both sides of the formula  $\phi_t^* E_0 = E_t$  two times in the variable t at t=0, we apply G to this formula. Then we have Theorem 1.

3. We shall give a partial result for what h satisfies the condition  $F(h,h) \in G(\mathcal{H}_2)$ . Consider  $S^n$  as the unit sphere in  $\mathbb{R}^{n+1}$ , and let  $\iota: S^n \to \mathbb{R}^{n+1}$  be the inclusion. Let  $x = (x_1, \dots, x_{n+1})$  be the canonical coordinate functions on  $\mathbb{R}^{n+1}$ . Let  $P_m$  be the vector space of homogeneous polynomials f(t,s) of degree m in two variables (t,s) whose degrees in the variable s are at most 1.

Proposition 2. Consider a polynomial f(x) of the form

$$f(x) = f_1(x) + f_3(x) + \sum_{m=2}^{k} h_{2m+1} \left( \sum_{i=1}^{m+1} a_i x_i, \sum_{i=1}^{m+1} b_i x_i \right),$$

where  $f_1(x)$  (resp.  $f_3(x)$ ) is a polynomial of degree 1 (resp. degree 3) in the variables  $x=(x_1, \dots, x_{n+1})$ ,  $h_{2m+1} \in P_{2m+1}$ , and  $a_i$ ,  $b_i$  are real constants. Then we have

$$F((\iota^*f)g_0, (\iota^*f)g_0) \in G(\mathcal{H}_2).$$

Proposition 3. Let f(x) be a homogeneous polynomial of degree

2k+1  $(k\geq 2)$  in the variable  $x=(x_1,\cdots,x_{n+1})$ . Assume either f(x) is a polynomial in only two variables  $(x_1,x_2)$  in case  $n\geq 3$ , or each irreducible components of f(x) in C[x] are also irreducible in  $C[x]/(\sum_{i=1}^{n+1}x_i^2)$  in case  $n\geq 4$ . Suppose the symmetric 2-form  $(\iota^*f)g_0$  on  $S^n$  satisfies the condition  $F((\iota^*f)g_0,(\iota^*f)g_0)\in G(\mathcal{H}_2)$ . Then there is a polynomial h(t,s) in  $P_{2k+1}$  and real constants  $a_i,b_i$  such that  $f(x)=h(\sum_{i=1}^{n+1}a_ix_i,\sum_{i=1}^{n+1}b_ix_i)$ .

For example, let  $f(x) = x_1^{2k+1} + x_2^{2k+1}$   $(k \ge 2)$ . Then  $(\iota^* f)g_0$  satisfies (\*). But it is clear that f(x) cannot be written in the form  $h(\sum_i a_i x_i, \sum_i b_i x_i)$  for any  $h \in P_{2k+1}$ . Therefore there is no  $C_{2\pi}$ -deformation  $\{g_i\}$  of  $g_0$  such that  $(d/dt)g_i|_{t=0} = (\iota^* f)g_0$ .

Remark. Let f(x) be a polynomial of the form in Proposition 2 such that  $f_3=0$  and  $(a_i)$  and  $(b_i)$  are linearly dependent. Then it is known that  $(\iota^*f)g_0$  is really an infinitesimal deformation (Weinstein's example, cf. [1] p. 120). For any other case in Proposition 2 we do not know whether  $(\iota^*f)g_0$  is an infinitesimal deformation or not.

The detailed proof will appear elsewhere.

## References

- [1] A. Besse: Manifolds All of Whose Geodesics are Closed. Springer-Verlag (1978).
- [2] V. Guillemin: The Radon transforms on Zoll surfaces. Adv. in Math., 22, 85-119 (1976).