21. C₁-Metrics on Spheres By Kazuyoshi KIYOHARA Department of Mathematics, Hokkaido University (Communicated by Kunihiko Kodaira, M. J. A., Feb. 12, 1982) 1. Let (M,g) be a riemannian manifold. Then we call g a C_t -metric if all of its geodesics are closed and have the common length l. As is well-known, the standard metric on the unit sphere S^n is a $C_{2\pi}$ -metric. Suppose $\{g_t\}$ is a one-parameter family of $C_{2\pi}$ -metrics on S^n such that g_0 is the standard one. Put $$\frac{d}{dt}g_t|_{t=0}=h.$$ We call such a symmetric 2-form h an infinitesimal deformation. It is known that each infinitesimal deformation h satisfies (*) $$\int_0^{2\pi} h(\dot{\gamma}(s), \dot{\gamma}(s)) ds = 0$$ for any geodesic $\gamma(s)$ of (S^n, g_0) parametrized by arc-length (cf. [1] p. 151). V. Guillemin has proved in [2] that in the case of S^2 the condition (*) is also sufficient for a symmetric 2-form h to be an infinitesimal deformation. The purpose of this note is to show that the situation is completely different in the case of S^n $(n \ge 3)$. We shall give another necessary condition for a symmetric 2-form h to be an infinitesimal deformation (Theorem 1). And we shall give a partial result for what h satisfies this condition (Propositions 2, 3). 2. We denote by \mathcal{K}_2 the vector space of symmetric 2-forms on S^n which satisfy (*). Let $\sharp: T^*S^n \to TS^n$ be the bundle isomorphism defined by $$g_0(\sharp(\lambda),v)=\lambda(v),\quad \lambda\in T_x^*S^n,\quad v\in T_xS^n,\quad x\in S^n.$$ Let E_0 be the function on T^*S^n such that $$E_{\scriptscriptstyle 0}(\lambda)\!=\! rac{1}{2}g_{\scriptscriptstyle 0}(\sharp(\lambda),\ \sharp(\lambda)), \qquad \lambda\in T^*S^n.$$ Consider the usual symplectic structure on T^*S^n , and let X_{E_0} be the symplectic vector field on T^*S^n defined by the hamiltonian E_0 . E_0 and X_{E_0} are called the energy function and the geodesic flow associated with the metric g_0 respectively. We denote by $\{\xi_t\}$ the one-parameter group of transformations of T^*S^n generated by X_{E_0} . Then $\{\xi_t\}$ induces a free S^1 -action of period 2π on the unit cotangent bundle S^*S^n . We define an operator $G: C^{\infty}(S^*S^n) \to C^{\infty}(S^*S^n)$ by $$G(f)(\lambda) = rac{1}{2\pi} \int_0^{2\pi} f(\xi_t \lambda) dt, \quad \lambda \in S^*S^n, \quad f \in C^{\infty}(S^*S^n).$$ Let $\widetilde{\mathcal{H}}_2$ be the vector space of functions on T^*S^n which are quadratic forms on each fibre $T_x^*S^n$ $(x \in S^n)$, and let \mathcal{H}_2 be the vector space of functions on S^*S^n which are the restrictions of elements of $\widetilde{\mathcal{H}}_2$ onto S^*S^n . For each $h \in \mathcal{H}_2$ we define a function \hat{h} on T^*S^n by $$\hat{h}(\lambda) = h(\sharp(\lambda), \sharp(\lambda)), \qquad \lambda \in T^*S^n.$$ Moreover, let X(h) be a homogeneous symplectic vector field on $T^*S^n\setminus\{0\text{-section}\}$ such that $X(h)E_0=\hat{h}$. We should remark that X(h) exists for any $h\in\mathcal{K}_2$, but is not unique. We now define a symmetric bilinear map $F:\mathcal{K}_2\times\mathcal{K}_2\to C^\infty(S^*S^n)$ by $$F(f,h)=G(X(f)\hat{h}), f, h \in \mathcal{K}_2.$$ It is easy to see that F is well-defined and is symmetric. Then our first result is Theorem 1. Let $\{g_t\}$ be a one-parameter family of $C_{2\pi}$ -metrics on S^n with g_0 being the standard one. Put $(d/dt)g_t|_{t=0}=h$. Then we have $F(h,h) \in G(\mathcal{H}_2)$. Remark. For S^2 it is known that $G(C^{\infty}(S^2)E_0) = G(\mathcal{H}_2) = \text{Image of } G$. Thus the assertion of Theorem 1 has no meaning in this case. The proof of Theorem 1 is based on the following lemma which is due to A. Weinstein (cf. [1] p. 122). **Lemma.** Let $\{g_t\}$ be as before, and let $\{E_t\}$ be the corresponding energy functions. Then there is a one-parameter family of homogeneous symplectic diffeomorphisms $\{\phi_t\}$ of $T^*S^n\setminus\{0\text{-section}\}$ such that $\phi_0=identity$ and $\phi_t^*E_0=E_t$. After differentiating both sides of the formula $\phi_t^* E_0 = E_t$ two times in the variable t at t=0, we apply G to this formula. Then we have Theorem 1. 3. We shall give a partial result for what h satisfies the condition $F(h,h) \in G(\mathcal{H}_2)$. Consider S^n as the unit sphere in \mathbb{R}^{n+1} , and let $\iota: S^n \to \mathbb{R}^{n+1}$ be the inclusion. Let $x = (x_1, \dots, x_{n+1})$ be the canonical coordinate functions on \mathbb{R}^{n+1} . Let P_m be the vector space of homogeneous polynomials f(t,s) of degree m in two variables (t,s) whose degrees in the variable s are at most 1. Proposition 2. Consider a polynomial f(x) of the form $$f(x) = f_1(x) + f_3(x) + \sum_{m=2}^{k} h_{2m+1} \left(\sum_{i=1}^{m+1} a_i x_i, \sum_{i=1}^{m+1} b_i x_i \right),$$ where $f_1(x)$ (resp. $f_3(x)$) is a polynomial of degree 1 (resp. degree 3) in the variables $x=(x_1, \dots, x_{n+1})$, $h_{2m+1} \in P_{2m+1}$, and a_i , b_i are real constants. Then we have $$F((\iota^*f)g_0, (\iota^*f)g_0) \in G(\mathcal{H}_2).$$ Proposition 3. Let f(x) be a homogeneous polynomial of degree 2k+1 $(k\geq 2)$ in the variable $x=(x_1,\cdots,x_{n+1})$. Assume either f(x) is a polynomial in only two variables (x_1,x_2) in case $n\geq 3$, or each irreducible components of f(x) in C[x] are also irreducible in $C[x]/(\sum_{i=1}^{n+1}x_i^2)$ in case $n\geq 4$. Suppose the symmetric 2-form $(\iota^*f)g_0$ on S^n satisfies the condition $F((\iota^*f)g_0,(\iota^*f)g_0)\in G(\mathcal{H}_2)$. Then there is a polynomial h(t,s) in P_{2k+1} and real constants a_i,b_i such that $f(x)=h(\sum_{i=1}^{n+1}a_ix_i,\sum_{i=1}^{n+1}b_ix_i)$. For example, let $f(x) = x_1^{2k+1} + x_2^{2k+1}$ $(k \ge 2)$. Then $(\iota^* f)g_0$ satisfies (*). But it is clear that f(x) cannot be written in the form $h(\sum_i a_i x_i, \sum_i b_i x_i)$ for any $h \in P_{2k+1}$. Therefore there is no $C_{2\pi}$ -deformation $\{g_i\}$ of g_0 such that $(d/dt)g_i|_{t=0} = (\iota^* f)g_0$. Remark. Let f(x) be a polynomial of the form in Proposition 2 such that $f_3=0$ and (a_i) and (b_i) are linearly dependent. Then it is known that $(\iota^*f)g_0$ is really an infinitesimal deformation (Weinstein's example, cf. [1] p. 120). For any other case in Proposition 2 we do not know whether $(\iota^*f)g_0$ is an infinitesimal deformation or not. The detailed proof will appear elsewhere. ## References - [1] A. Besse: Manifolds All of Whose Geodesics are Closed. Springer-Verlag (1978). - [2] V. Guillemin: The Radon transforms on Zoll surfaces. Adv. in Math., 22, 85-119 (1976).