19. A Note on Refinable Maps and Quasi-Homeomorphic Compacta

By Hisao Kato
Institute of Mathematics, University of Tsukuba
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1982)

It is assumed that all spaces are metrizable and maps are continuous. A connected compactum is a continuum. A map $f: X \rightarrow Y$ between compacta is said to be an ε-mapping if f is surjective and $\operatorname{diam} f^{-1}(y)<\varepsilon$ for each $y \in Y$. A compactum X is Y-like if for each $\varepsilon>0$ there is an ε-mapping X to Y. Two compacta X and Y are quasihomeomorphic [2] if X is Y-like and Y is X-like. A map $r: X \rightarrow Y$ between compacta is refinable [5] if for each $\varepsilon>0$ there is an ε-mapping $f: X \rightarrow Y$ such that $d(r, f)=\sup \{d(r(x), f(x)) \mid x \in X\}<\varepsilon$.

In [6], H. Roslaniec proved the following
Theorem (H. Roslaniec). If X and Y are quasi-homeomorphic compact subsets of the Euclidean n-dimensional space E^{n}, then $E^{n}-X$ and $E^{n}-Y$ have the same number of components.

In [3] and [4], the author investigated shape theoretic properties of refinable maps. One of the purposes of this note is to prove the following

Theorem 1. If X and Y are compact subsets of E^{n} and admit a refinable map $r: X \rightarrow Y$, then $E^{n}-X$ and $E^{n}-Y$ have the same number of components.

Corollary 2 ([3, Corollary 2.5]). If X and Y are continua contained in the plane E^{2} and admit a refinable map $r: X \rightarrow Y$, then X and Y have the same shape, i.e., $\operatorname{Sh}(X)=\operatorname{Sh}(Y)$.

In [2], K. Borsuk showed that there exist quasi-homeomorphic compacta (non connected) $X, Y \subset E^{3}$ such that $\operatorname{Sh}(X) \neq \operatorname{Sh}(Y)$. H. Roslaniec [6] asked the following question: Is it true that quasihomeomorphic continua have the same shape? We show that the question has a negative answer. In Example 5 (below), we give Peano continua X and Y in E^{3} such that (1) $\operatorname{Sh}(X) \neq \operatorname{Sh}(Y)$, (2) X and Y are quasi-homeomorphic and (3) there is a refinable map $r: X \rightarrow Y$.

To prove Theorem 1, we will use the following
Lemma 3 ([3, Theorem 1.5]). If a map $r: X \rightarrow Y$ between compacta is refinable, then r induces a pseudo-isomorphism in shape category.

Lemma 4 ([6, Lemma 1]). Let X be a compact subset of E^{n} and U be a neighborhood of X in E^{n}. Then there is a compact polyhedron W
such that (1) $X \subset \operatorname{Int} W \subset W \subset U$, and W satisfies one of the following conditions (2) and (2)'.
(2) If $E^{n}-X$ has $m(<\infty)$ components $S_{1}, S_{2}, \cdots S_{m}$, then $E^{n}-W$ has also m components $T_{1}, T_{2}, \cdots, T_{m}$ such that $T_{i} \subset S_{i}(i=1,2, \cdots, m)$.
(2)' If $E^{n}-X$ has ∞ components S_{1}, S_{2}, \cdots, then for each j there is at most one component of $E^{n}-W$ which is contained in S_{j}. Moreover, it can be assumed that $E^{n}-W$ has more components than any fixed natural number k. A polyhedron which satisfies (1) and (2) will be denoted by $W(U, X)$. A polyhedron which satisfies (1) and (2)' will be denoted by $W(U, X ; k)$.

Proof of Theorem 1. First, we shall prove that the number of components of $E^{n}-X$ is not less than the number of components of $E^{n}-Y$. We may assume that $E^{n}-X$ has $m_{1}(<\infty)$ components. Suppose, on the contrary, that $E^{n}-Y$ has $m_{2}\left(>m_{1}\right)$ components. If $m_{2}<\infty$, let $W_{2}=\mathrm{W}\left(E^{n}, Y\right)$. If $m_{2}=\infty$, let $W_{2}=W\left(E^{n}, Y ; m_{1}+1\right)$. Since E^{n} is an $A R$, there is an extension $R: E^{n} \rightarrow E^{n}$ of $r: X \rightarrow Y$. By Lemma 4, there is a compact polyhedron $W_{1}=W\left(R^{-1}\left(W_{2}\right), X\right)$. By Lemma 3, r induces a pseudo-isomorphism in shape category. Hence there is a compact polyhedron $W_{3} \subset W_{2}$ and a map $g: W_{3} \rightarrow W_{1}$ such that $R g \simeq i$ in W_{2}, where $i: W_{3} \rightarrow W_{2}$ is the inclusion. Moreover, we may assume that if $m_{2}<\infty$, $W_{3}=\left(W_{2}, Y\right)$, and if $m_{2}=\infty, W_{3}=W\left(W_{2}, Y ; m_{1}+1\right)$. Consider the following commutative diagram (see [7]),

where $j: E^{n}-W_{2} \rightarrow E^{n}-W_{3}$ is the inclusion and H_{*} and H^{*} denote the singular homology and cohomology with coefficients in integers Z, respectively. Note that $\varphi_{W_{3}}, \varphi_{W_{2}}, \partial_{W_{3}}$ and $\partial_{W_{2}}$ are isomorphisms. By the choice of $W_{3}, \tilde{H}_{0}(j)$ is a monomorphism, hence $H^{n-1}(i)$ is also a monomorphism. Consider the following commutative diagram

Note that $H^{n-1}\left(W_{2}\right) \supset Z^{m_{1}}$ and $H^{n-1}\left(W_{1}\right)=\boldsymbol{Z}^{m_{1}-1}$. Since $H^{n-1}(i)$ is a monomorphism, $H^{n-1}(i)\left(H^{n-1}\left(W_{2}\right)\right) \supset Z^{m_{1}}$. This implies the contradiction. The converse is similar.

Example 5. Consider the following set in E^{3}.

$$
\begin{aligned}
K_{n}= & \left\{(x, y, 0) \in E^{3} \mid(x-(2 n+1) / 4 n(n+1))^{2}+(y-(2 n+1) / 4 n(n+1))^{2}\right. \\
& \left.<(1 / 4 n(n+1))^{2}\right\}, \quad(n=1,2, \cdots) . \\
A_{1} & =D-\cup_{n=1}^{\infty} K_{n}, \text { where } D \text { denotes the subset in the plane } z=0
\end{aligned}
$$ which is the triangle with vertices $(0,0,0),(1,0,0)$ and $(0,1,0)$.

$$
\begin{aligned}
& A_{2}=\left\{(x, y, z) \in E^{3} \mid(x, y, 0) \in A_{1} \text { and }-(x+y) \leqq z \leqq x+y\right\} . \\
& B=\operatorname{Bd}_{E^{3}} A_{2} \text { (see [1]). }
\end{aligned}
$$

Then B is a 2-dimensional Peano continuum and not movable (see [1]). There is an inverse sequence $\underline{B}=\left\{\left(B_{n}, b_{n}\right), p_{n, n+1}\right\}$ such that $(B,(0,0,0))$ $=\operatorname{invlim} \underline{B}, p_{n, n+1}:\left(B_{n+1}, b_{n+1}\right) \rightarrow\left(B_{n}, b_{n}\right)$ is surjective and each B_{n} is a closed surface with genus n. By identifying the points b_{1}, b_{2}, \cdots of B_{1}, B_{2}, \cdots we obtain a continuum $(Y, *)=\bigvee_{n=1}^{\infty}\left(B_{n}, b_{n}\right)$ with a metric d_{Y} on Y such that $d_{Y}(x, y)<1 / n$ if $x, y \in B_{n}$. Then Y is a Peano continuum which is homeomorphic to a compact subset of E^{3}. Similarly, we obtain a Peano continuum $(X, *)=(B,(0,0,0)) \vee(Y, *)$ by identifying the points $(0,0,0)$ and $*$. Note that X is homeomorphic to a compact subset of E^{3}. Define a map $r: X \rightarrow Y$ by $r(x)=x$ if $x \in Y, r(x)=*$ if $x \in B$. Then r is refinable (cf. [3, Example 2.6]). In particular, X is Y-like. Next we show that Y is X-like. Let $\varepsilon>0$. Choose a number m with $\varepsilon>1 / m$. Since $B \cup B_{m}(\subset X)$ is a Peano continuum, by HahnMazurkiewicz's theorem, there is an onto map $g_{m}:\left(B_{m}, b_{m}\right) \rightarrow(B$ $\left.\cup B_{m}, *\right)$. Define a map $g: Y \rightarrow X$ by

$$
g(y)=\left\{\begin{array}{l}
y, \quad \text { if } y \in \bigcup_{n=1}^{m-1} B_{n} \cup \cup_{n=m+1}^{\infty} B_{n}, \\
g_{m}(y), \quad \text { if } y \in B_{m} .
\end{array}\right.
$$

Then g is an ε-mapping, which implies that Y is X-like. Since $B(\subset X)$ is a retract of X and B is not movable, X is not movable. On the other hand, Y is movable. Hence $\operatorname{Sh}(X) \neq \operatorname{Sh}(Y)$.

References

[1] K. Borsuk: On a locally connected non-movable continuum. Bull. Acad. Polon., 17, 425-430 (1969).
[2] -: A note on the shape of quasi-homeomorphic compacta. Comment. Math. Prac. Math., 14, 25-34 (1970).
[3] H. Kato: Refinable maps in the theory of shape (to appear in Fund. Math.).
[4] -: Refinable maps onto locally n-connected compacta. Tsukuba J. Math., 4, 83-87 (1980).
[5] J. Ford and J. W. Rogers, Jr.: Refinable maps. Colloq. Math., 39, 263-269 (1978).
[6] H. Roslaniec: On some properties of quasi-homeomorphic compacta. Bull. Acad. Polon., 23, 1281-1285 (1975).
[7] E. H. Spanier: Algebraic Topology. McGraw-Hill, New York (1966).

