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A Note on Refinable Maps and Quasi.Homeomorphic
Compacta

By Hisao KAT0
Institute of Mathematics, University of Tsukuba

(Communicated by K.Ssaku YOSIDA, M. J. h., Feb. 12, 1982)

It is assumed that all spaces are metrizable and maps are con-
tinuous. A connected compactum is a continuum. A map f" X-Y
between compacta is said to be an e-mapping if f is surjective and
diam f-(y) for each y e Y. A compactum X is Y-like if for each
0 there is an -mapping X to Y. Two compacta X and Y are quasi-
homeomorphic [2] if X is Y-like and Y is X-like. A map r" X-Y be-
tween compacta is refinable [5] if for each 0 there is an -mapping

f: X--Y such that d(r, f)--sup (d(r(x), f(x)) x e X)<.
In [6], H. Roslaniec proved the following
Theorem (H. Roslaniec). If X and Y are quasi-homeomorphic

compact subsets of the Euclidean n-dimensional space E, then E-X
and En- Y have the same number of components.

In [3] and [4], the author investigated shape theoretic properties
of refinable maps. One of the purposes of this note is to prove the
following

Theorem 1. If X and Y are compact subsets of E and admit a

refinable map r: X-+Y, then E-X and E-Y have the same number
of components.

Corollary 2 ([3, Corollary 2.5]). If X and Y are continua con-
tained in the plane E and admit a refinable map r X--Y, then X and
Y have the same shape, i.e., Sh (X)-Sh (Y).

In [2], K. Borsuk showed that there exist quasi-homeomorphic
compacta (non connected) X, YE such that Sh (X)4=Sh (Y). H.
Roslaniec [6] asked the following question" Is it true that quasi-
homeomorphic continua have the same shape? We show that the ques-
tion has a negative answer. In Example 5 (below), we give Peano
continua X and Y in E such that (1) Sh (X)4=Sh (Y), (2) X and Y are
quasi-homeomorphic and (3) there is a refinable map r: XY.

To prove Theorem 1, we will use the following
Lemma 3 ([3, Theorem 1.5]). If a map r: X-Y between com-

pacta is refinable, then r induces a pseudo-isomorphism in shape cate-
gory.

Lemma 4 ([6, Lemma 1]). Let X be a compact subset of E and U
be a neighborhood of X in E. Then there is a compact polyhedron W
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such that (1) XInt WcWU, and W satisfies one of the following
conditions (2) and (2)’.

(2) If E-X has m (<(c) components S, S, ...S, then En-W
has also m components T, T, ..., T such that TS (i-1, 2, ..., m).

(2)’ If E-X has oo components S, S, ..., then for each ] there
is at most one component of E-Wwhich is contained in S. Moreover,
it can be assumed that E-W has more components than any fixed
natural number k. A polyhedron which satisfies (1) and (2)will be
denoted by W(U, X). A polyhedron which satisfies (1) and (2)’ will be
denoted by W(U,X k).

Proof of Theorem 1. First, we shall prove that the number of
components of E-X is not less than the number of components of
E Y. Wemay assume thatE Xhasm ( o) components. Suppose,
on the contrary, that E-Y has m. (m)components. Ifmo, let
W=W(E, Y). If m=co, let W.=W(E, Y; m+l). Since E is an
AR, there is an extension R"EE of r" X-Y. By Lemma 4, there
is a compact polyhedron W= W(R-(WO, X). By Lemma 3, r induces
a pseudo-isomorphism in shape category. Hence there is a compact
polyhedron W W. and a map g" W-W such thatRgi in W, where
i" WW is the inclusion. Moreover, we may assume that if m. c,
W=(W, Y), and if m= c, W=W(W, Y; m+ 1). Consider the fol-
lowing commutative diagram (see [7]),

H-(W)< H(E, E W) I7to(E W)

H ’(WO(, H,(E’, E WO o>H0(E-W)

where ]" E- W--).E’-W is the inclusion and H. and H* denote the
singular homology and cohomology with coefficients in integers Z,
respectively. Note that .,, 3. and3 are isomorphisms. By the
choice of W, Ho(]) is a monomorphism, hence H’-(i) is also a mono-
morphism. Consider the ollowing commutative diagram

H,-’(W)
Hn-(i)

H-,(W)H-’(W’)
H-*(R! WD

Note that H-(W.)Z, and H-(W)--Z’-. Since H-(i) is a mono-
morphism, H-(i)(H-(W))Z. This implies the contradiction.
The converse is similar.

Example 5. Consider the following set in E.
K- {(x, y, 0) e El(x-(2n+l)/4n(n+l))+(y-(2n+l)/4n(n+l))

< (1 /4n(n+ 1))}, (n- 1, 2, ).
A--D--O= K, where D denotes the subset in the plane z=0

which is the triangle with vertices (0, 0, 0), (1, 0, 0) and (0, 1, 0).
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A={(x, y,z) eE](x, y, O) eA and -(x+y)<z_x+y}.
B=Bd,A (see [1]).

Then B is a 2-dimensional Peano continuum and not movable (see [1]).
There is an inverse sequence B {(B, b), p./} such that (B, (0, 0, 0))

invlim B, p,/" (B/, b/)-(Bn, b) is surjective and each B is a
closed surface with genus n. By identifying the points b, b, o
B, B., we obtain a continuum (Y, .)-- /% (B, b) with a metric dr
on Y such that dr(x, y) 1/n if x, y e B. Then Y is a Peano continuum
which is homeomorphic to a compact subset of E. Similarly, we
obtain a Peano continuum (X, .)--(B, (0, 0, 0))/(Y, .) by identifying the
points (0, 0, 0) and .. Note that X is homeomorphic to a compact
subset of E. Define a map r" X--.Y by r(x)--x if x e Y, r(x)--, if
x e B. Then r is refinable (cf. [3, Example 2.6]). In particular, X is
Y-like. Next we show that Y is X-like. Let 0. Choose a number
m with l/m. Since BUB (cX) is a Peano continuum, by Hahn-
Mazurkiewicz’s theorem, there is an onto map g" (B,b)(B
UB, .). Define a map g" Y-X by

g(y)= {y, if y e Un-1BnUU=m+ Bn,
g(y), if y e B.

Then g is an e-mapping, which implies that Y is X-like. Since B (cX)
is a retract o X and B is not movable, X is not movable. On the
other hand, Y is movable. Hence Sh (X)4=Sh (Y).
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