17. A Calculus of the Gauss-Manin System of Type $\mathrm{A}_{l^{*}}$ II

The Hamiltonian Representation

By Shinzo Ishiura*) and Masatoshi Noumi**)
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1982)

The present note is the later half of our article titled "A calculus of the Gauss-Manin system of type A_{l} ". We keep the notation and the terminology in our previous note [4].
3. The flat coordinate system. Now we return to the setting of no. 1 and work with the ring $R\left(\left(x^{-1}\right)\right)$, where $R=\mathbf{C}\left[s_{2}, s_{3}, \cdots\right]$. We define a new "coordinate system" (z_{2}, z_{3}, \ldots) for R in place of (s_{2}, s_{3}, \ldots) by the formula

$$
\begin{equation*}
x=f-\sum_{i=2}^{\infty} z_{i} f^{1-i} \tag{3.1}
\end{equation*}
$$

It is easy to see that z_{2}, z_{3}, \cdots are determined inductively as polynomials in s_{2}, s_{3}, \cdots and satisfy $\partial_{s_{i}}\left(z_{i}\right)=1$ and $\partial_{s_{j}}\left(z_{i}\right)=0$ for $i<j$. The sequence (z_{2}, z_{3}, \cdots) in R will be called the flat coordinates associated with $\left(s_{2}, s_{3}, \cdots\right)$.

Theorem 2 (Versality formula). The flat coordinate system $\left(z_{2}, z_{3}, \cdots\right)$ is characterized by the formulae

$$
\text { (3.2) } \quad \partial_{z_{j}}(f)=\partial_{x}(f) f^{1-1} \quad \text { for } j=2,3, \cdots
$$

Moreover we have

$$
\begin{equation*}
\partial_{z_{j}}\left(F_{k}\right)=k e_{k-j} \quad \text { for } j=2,3, \cdots \tag{3.3}
\end{equation*}
$$

For an indeterminate u, set $s(u)=\sum_{i=2}^{\infty} s_{i} u^{i}$ and $z(u)=\sum_{i=2}^{\infty} z_{i} u^{i}$. Then the coordinate transformations between the two coordinate systems are given by

$$
\begin{equation*}
z_{j}=\frac{1}{j-1}(1+s(u))_{j}^{j-1} \quad \text { for } j=2,3, \cdots \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j}=\frac{-1}{j-1}(1-z(u))_{j}^{j-1} \quad \text { for } j=2,3, \cdots \tag{3.5}
\end{equation*}
$$

An advantage of our formation of the flat coordinates lies in the following two theorems, which will play an essential role in no. 4.

Theorem 3 (Elimination of the variable x). In terms of the flat basis $\left(e_{k}\right)_{k \in \mathbf{N}}$ for $R[x]$, the flat coordinates $\left(z_{2}, z_{3}, \cdots\right)$ are represented by

$$
\begin{equation*}
z_{j}=-(1+e(u))_{j}^{-1} \quad \text { for } j=2,3, \cdots, \tag{3.6}
\end{equation*}
$$

where $e(u)=\sum_{i=1}^{\infty} e_{i} u^{i}$.
Theorem 4. The sequence $\left(F_{k}\right)_{k \in \mathbf{N}}$ is represented by
*) Department of Mathematics, Keio University.
**) Department of Mathematics, Sophia University.

$$
\begin{equation*}
F_{k}=k \log (1+e(u))_{k} \quad \text { for } k=1,2, \cdots, \tag{3.7}
\end{equation*}
$$

where $\log (1+e(u))_{k}$ stands for the coefficient of u^{k} in the Taylor expansion of $\log (1+e(u))$.

By the l-reduction $R \rightarrow R_{l}, z_{2}, z_{3}, \cdots$ define a sequence in R_{l} $=\mathbf{C}\left[t_{2}, \cdots, t_{l}\right]$. Set

$$
\begin{equation*}
y_{i}=l z_{i} \quad \text { for } i=2, \cdots, l \tag{3.8}
\end{equation*}
$$

in R_{l}. Then (y_{2}, \cdots, y_{l}) coincides with the "flat generator system" of type A_{l-1} in the sense of K. Saito, T. Yano and J. Sekiguchi [2]. We call the sequence $\left(y_{2}, \cdots, y_{l}\right)$ the flat coordinates associated with $\left(t_{2}, \cdots, t_{l}\right)$. Then, for the versal deformation $F=x^{l}+t_{2} x^{l-2}+\cdots+t_{l}$ of type A_{l-1}, we have

$$
\begin{equation*}
\partial_{y_{j}}(F)=e_{l-j} \quad \text { for } j=2, \cdots, l \quad \text { in } R_{l}[x] . \tag{3.9}
\end{equation*}
$$

Note also that $(1 / l) \partial_{x}(F)=e_{l-1}$. The coordinate transformations between $\left(t_{2}, \cdots, t_{l}\right)$ and $\left(y_{2}, \cdots, y_{l}\right)$ are given by the following:

$$
\begin{equation*}
y_{j}=\frac{l}{j-1}(1+t(u))_{j}^{(j-1) / l} \quad \text { for } j=2, \cdots, l \tag{3.10}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
t_{j}=\frac{-l}{j-l}\left(1-\frac{1}{l} y(u)\right)_{j}^{j-l} \quad \text { for } j=2, \cdots, l-1 \tag{3.11}\\
t_{l}=-l \log \left(1-\frac{1}{l} y(u)\right)_{l}
\end{array}\right.
$$

where $y(u)=\sum_{i=2}^{l} y_{i} u^{i}$.
4. The Hamiltonian representation and a quantized contact transformation. In what follows, we give a canonical representation of the Gauss-Manin system H_{F} associated with the versal deformation $F=x^{l}+t_{2} x^{l-2}+\cdots+t_{l}$ of type $A_{l-1}(l \geq 2)$. By doing so, we can determine the quantized contact transformation which reduces H_{F} to a standard form.

Let (y_{2}, \cdots, y_{l}) be the flat coordinates associated with $\left(t_{2}, \cdots, t_{l}\right)$ (no. 3). Then, by the versality formula (3.9), we get

$$
\begin{equation*}
\partial_{y_{l-i}} \partial_{y_{l}}^{-1} \delta(F)=e_{i} \delta(F) \quad \text { for } i=0, \cdots, l-2 \text { in } \mathcal{C}_{[F]} . \tag{4.1}
\end{equation*}
$$

We set $\partial_{i^{*}}=\partial_{y_{i},}$, where $i^{*}=l-i$, for $i=0, \cdots, l-2$.
Proposition 4. (i) Let i and j be integers with $1 \leq i, j \leq l-2$.
Then we have

$$
\partial_{i^{*}} \partial_{j *} \partial_{0^{*}}^{-2} \delta(F)= \begin{cases}e_{i} e_{j} \delta(F) & \text { if } i+j<l, \tag{4.2}\\ e_{i} e_{j} \delta(F)+\frac{1}{l} \partial_{0^{*}}^{-1} \delta(F) & \text { if } i+j=l .\end{cases}
$$

(ii) Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{l-2}\right) \in \mathbf{N}^{l-2}$ be a multi-index such that

$$
|\alpha|=\sum_{i=1}^{l-2} \alpha_{i} \geq 3 \quad \text { and } \quad\|\alpha\|=\sum_{i=1}^{l-2} i \alpha_{i} \leq l .
$$

Then we have

$$
\begin{equation*}
\partial_{1 *}^{\alpha_{1}} \cdots \partial_{(l-2) *}^{\alpha_{1}-2} \partial_{0^{*}}^{-|\alpha|} \delta(F)=e_{1}^{\alpha_{1}} \cdots e_{l-2}^{\alpha_{1}-2} \delta(F) . \tag{4.3}
\end{equation*}
$$

We denote by η_{j} the covector corresponding to the operator $\partial_{j}=\partial_{y_{j}}$ for $j=2, \cdots, l$ and set

$$
\begin{align*}
H(\eta) & =H\left(\eta_{2}, \cdots, \eta_{l}\right) \\
& =-l \eta_{l} \log \left(1+\frac{1}{\eta_{l}} \eta_{*}(u)\right)_{i} \tag{4.4}
\end{align*}
$$

where $\eta_{*}(u)=\sum_{i=1}^{l-2} \eta_{i} u^{i}$, and

$$
\begin{equation*}
H_{j}^{\prime}(\eta)=\partial_{n j} H(\eta) \quad \text { for } j=2, \cdots, l . \tag{4.5}
\end{equation*}
$$

Thus we obtain a sequence $H_{2}^{\prime}\left(\partial_{y}\right), \cdots, H_{l}^{\prime}\left(\partial_{y}\right)$ of micro-differential operators in $\mathcal{E}_{s,\left(0, a_{v}\right)}$:

$$
\begin{equation*}
H_{j}^{\prime}\left(\partial_{v}\right)=-l\left(1+\partial_{l}^{-1} \partial_{*}(u)\right)_{j}^{-1} \quad \text { for } j=2, \cdots, l-1 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{l}^{\prime}\left(\partial_{\psi}\right)=-l\left(1+\partial_{l}^{-1} \partial_{*}(u)\right)_{l}^{-1}-l \log \left(1+\partial_{l}^{-1} \partial_{*}(u)\right)_{l}, \tag{4.7}
\end{equation*}
$$

where $\partial_{*}(u)=\sum_{i=1}^{l-2} \partial_{t} u^{i}$. By Theorems 3 and 4 combined with Proposition 4, we obtain

Theorem 5 (Hamiltonian representation for H_{F}). With the notations above, the Gauss-Manin system H_{F} of type A_{l-1} is represented as the following system of micro-differential equations:

$$
\left\{\begin{array}{l}
y_{j} u=H_{j}^{\prime}\left(\partial_{y}\right) u \quad \text { for } j=2, \cdots, l-1 \text { and } \tag{4.8}\\
y_{\imath} u=H_{l}^{\prime}\left(\partial_{y}\right) u+\frac{l-1}{2} \partial_{y_{l}^{-1}}^{-1} u .
\end{array}\right.
$$

In other words, we have an isomorphism

$$
\mathcal{E}(0) / \sum_{j=2}^{L} \mathcal{E}(0) P_{j} \xrightarrow{\longrightarrow} H_{F}^{(0)},
$$

where $\mathcal{E}(0)=\mathcal{E}_{S}(0)_{(0, d y l)}$ and

$$
\begin{align*}
& P_{j}=y_{j}-H_{j}^{\prime}\left(\partial_{y}\right) \quad \text { for } j=2, \cdots, l-1, \\
& P_{l}=y_{l}-H_{l}^{\prime}\left(\partial_{y}\right)-\frac{l-1}{2} \partial_{y_{l}}^{-1} . \tag{4.9}
\end{align*}
$$

Corollary. With the coordinates $\left(y_{2}, \cdots, y_{l} ; \eta_{2}, \cdots, \eta_{l}\right)$ of $T^{*} S$, the characteristic variety of the Gauss-Manin system H_{F} is defined by the equations
(4.10) $\quad y_{j}=H_{j}^{\prime}(\eta) \quad$ for $j=2, \cdots, l$,
near the codirection ($0, d y_{i}$).
Note that the equations (4.10) give a parametrization of the discriminant set of the versal deformation F.

Let $T=\mathbf{C}^{t-1}$ be another complex affine ($l-1$)-space with coordinates $\left(x_{2}, \cdots, x_{i}\right)$. We define a quantized contact transformation

$$
\Phi: \mathcal{E}_{S,(0, t v)} \xrightarrow{\longrightarrow} \mathcal{E}_{r,(0, \alpha x)}
$$

as follows. (For the generalities of quantized contact transformations, see F. Pham [1].) Set

$$
\begin{equation*}
h\left(x_{2}, \cdots, x_{l-1}\right)=-l \log \left(1+x_{*}(u)\right)_{l}, \tag{4.11}
\end{equation*}
$$

where $x_{*}(u)=\sum_{i=1}^{l-2} x_{i}{ }^{*}, u^{i}$. As the kernel form of the transformation Φ, we take

$$
\begin{equation*}
r=\delta\left(y_{l}-x_{l}-h\left(x_{2}, \cdots, x_{l-1}\right)-\sum_{i=2}^{l-1} y_{i} x_{i}\right) \otimes d y_{2} \wedge \cdots \wedge d y_{l-1} . \tag{4.12}
\end{equation*}
$$

Then the transformation Φ is defined by

$$
\Phi(P) \cdot \gamma=\gamma \cdot P \quad \text { for each } P \in \mathcal{E}_{S,\left(0, a y_{l}\right)} .
$$

Theorem 6. By the quantized contact transformation Φ with kernel form γ, the Gauss-Manin system H_{F} is transformed to the following system of micro-differential equations for $\delta^{((1-l) / 2)}\left(x_{l}\right)$:

$$
\left\{\begin{array}{l}
\partial_{x_{j}} \partial_{x_{l}}^{-1} u=0 \quad \text { for } j=2, \cdots, l-1 \text { and } \tag{4.13}\\
x_{l} u=\frac{l-1}{2} \partial_{x_{l}}^{-1} u .
\end{array}\right.
$$

References

[1] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Birkhäuser, Boston (1979).
[2] K. Saito, T. Yano, and J. Sekiguchi: On a certain generator system of the ring of invariants of a finite reflection group. Comm. in Algebra, 8, 373408 (1980).
[3] K. Saito: Primitive forms for a universal unfolding of a function with an isolated critical point (preprint).
[4] S. Ishiura and M. Noumi: A calculus of the Gauss-Manin system of type A_{l}. I. Proc. Japan Acad., 58A, 13-16 (1982).

