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We study matrices of microdifferential operators of the form
P--PP2I+Q; here P and P are scalar operators such that the
Poisson bracket of their principal symbols never vanishes, Q is an
mm matrix of operators of lower order, and I denotes the unit
matrix of degree m.

In 1, we study the propagation of micro-analyticity of solutions
of the equation Pu-O when the principal symbol of P is real. Theo-
rem 1 is a partial generalization of Corollary 3.7 of [3], where the
principal symbol of P was also assumed to be real,

In 2, we study the analytic hypo-ellipticity of P when P can be
transformed into the form D/-lxD in a neighborhood of
(0, /- ldx) e /- 1T*R with a positive odd integer/ (cf. [5]). Theo-
rem 2 generalizes our previous result (Corollary of [4]) which cor-
responds to the case /--1. To prove Theorem 2, we use different
methods from those sketched in [4]; Schapira’s theory of positivity
(cf. [6])enables us to reduce the problem of analytic hypo-ellipticity
to that of propagation of micro-analyticity of solutions of such equa-
tions as treated in 1.

1. Propagation of regularity. Set X=C z=(z, .., z) and
M--R x--(x, ..., x). We denote by T’X= {(z, ) e C C} the co-
tangent bundle of X, by T*X--{(x, /-1/); x e R, e R} the conormal
bundle of M in X, and by C the sheaf on T*X of microfunctions.
For holomorphic functions f and g defined on an open subset of T’X,
we set

and {f, g}=Hfg, and denote by fc the complex conjugate of f with
respect to T*X; i.e., f is the unique holomorphic function such that

f=f holds on T*X. We denote by a the principal symbol of a micro-
differential operator of finite order, and by a the symbol of order ]
when the operator is of order at most ].

Let P and P. be microdifferential operators of order l and l. re-
spectively defined in a neighborhood of p e T*X-M. Set l-l+ l. and
let Q =(Q,) be an .m m matrix of microdifferential operators of order
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at most l--1. We assume
(A.1) a(P,)(p)=a(P)(p)=O,
(A.2) {a(P,), a(P)}(p)=/=O.
Let ,, ..., be the eigenvalues of the matrix

(a_(Q)(p)/ {a(P), a(P)}(p)).
Then we also assume

(A.3) e{0,1,2,...}for]=l,...,m.
Set V= {(z, ) e T*X; a(P)(z, )=0} and

V= {(z, ) e T’X; a(P)(z, 5)=0} for ]= 1, 2.
In this section we assume

(R) V,= V.
Then V=V T*X is a 1-codimensional real analytic submanifold of

T*X. There is a real valued real analytic 2unction f defined in a
neighborhood (in T*X)o p such that V={f=O}, that df and ,dx... +dx are linearly independent, and that f is homogeneous
with respect to ]. Then each maximal integral curve of the real
vector field /-1H on V is clled a bichracteristic of V.

Now let b(p) be the bicharacteristic o V through p. Then we
have the ollowing

Theorem 1. Set P-PPI+Q, where P, P, Q satisfy the condi-
tions (A.1)-(A.3) and (R). Let u be a column vector of m microfunc-
tions defined in a neighborhood of p such that Pu=O and that u
vanishes on b(p)--{p}. Then u vanishes on b(p).

Now we give a sketch of the proof. Firstly, wemy assume that

P=x nd that p=(0, /-ldx) by a real quantized contact transfor-
mation. Set N= {x e M x= 0} and Y-- {z e X; z 0}. We define the
map p" T*X[ -- T*Y by p(0, x’, /-1]) (x’, /-1]’), where x’
=(x, ..., x) and ]’=(], ..., ]). Put p’=(O, /- ldx) e T*Y. Then
it is sufficient to prove the ollowing proposition in view of Theorem
2.5 o2 [3]. (We use the notation D=O/x.)

Proposition. Set
P=x(DI-A(x, D’))-B(x’, D’)

here A=(A) and B=(B) ar mXm matrices of microdifferential
operators defined in a neighborhood of p-(p’) such that

( ) the order of A<=I, the order of B<=O.
(ii) [x,A]=[x,B]=[D,B]=O.
(iii) l e Z and t--l e Z--{0} hold for 1_< i, " m, or else l

=/ e{-1,-2,-3,...} holds, where l,’" ",l are the eigenvalues

of 0(B)(’).
Under these assumptions, the homomorphism

P" (p,C), >(p,C)
is inyective.

To prove this proposition, we use the shea C+ and the theory
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of mild hyperfunctions both developed by Kataoka (cf. [1], [2]).
Example 1. Put x=(x, x)e R and set

P=DI(D1-- /- lxiD2) +a(x)D+a2(x)D2+ b(x)
here a, a, b are real analytic functions defined in an open subset U of
R. Assume that a(0, x) e {0, -/- 1, -2/- 1, ...} for (0, x) e U.
Let u be a hyperfunction defined in U such that Pu is real analytic in
U and that u is real analytic in {x e U; x =/=0}. Then u is real analytic
in U.

2. Analytic hypo.ellipticity. Let P1, P2, Q be as in 1 satisfy-
ing (A.1)-(A.3). In this section, we assume

(H) VV is non-singular, and the pull back of d:Adz+...
+dAdz to V V is non-degenerate on a neighborhood of p; there
are a positive odd integer k and a complex number a such that

(H(pl)Ja(p)c(p)=O for 0]=<k-l,
a-(H(pl)a(P)c(p)< O,
(k-- 1)(d(aa(P1)) + d(aa(P1))9(p) O.

Theorem 2. Under the assumptions (A.1)-(A.3) and (H), the
homomorphism

PP2I+G" (CM) >(CM)
is in]ective.

We give a sketch of the prooL First, note that P is equivalent
to the operator D+/- lxD, with p=(0, /- ldx,) by real quantized
contact transformation (cL [5]). Then it is easy to see that there is
a complex contact transformation o such that (T*X, C(T*X)) is
positive at p in the sense o Schapira [6], T*X 9(T*X)= {(x, /- 1)
e T*X x=0}, and , o=:+/-L-iz,. Then Theorem 2 ollows rom
Theorem 1 in view o Corollaire 3.4 oi [6].

Example 2. Put x=(xx, x)e R and set
P=(D -k /-:-ixD)(D-- /- lxD)+ a.(x)D;D

here a(x)are real analytic functions defined in an open subset U of
R, and k, are positive odd integers. Assume that a(0,,)(0, x)e /-1Z
or (0, x)e U. Then P is analytic hypo-elliptic in U; i.e., if u is a
hyperfunction defined in an open subset U’ of U such that Pu is real
analytic in U’, then u is real analytic in U’.
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