14. Analytic Hypo-Ellipticity and Propagation of Regularity for Operators with Non-Involutory Characteristics

By Toshinori ÔAKU

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1982)

We study matrices of microdifferential operators of the form $P = P_1P_2I_m + Q$; here P_1 and P_2 are scalar operators such that the Poisson bracket of their principal symbols never vanishes, Q is an $m \times m$ matrix of operators of lower order, and I_m denotes the unit matrix of degree m.

In §1, we study the propagation of micro-analyticity of solutions of the equation Pu=0 when the principal symbol of P_1 is real. Theorem 1 is a partial generalization of Corollary 3.7 of [3], where the principal symbol of P_2 was also assumed to be real.

In §2, we study the analytic hypo-ellipticity of P when P_1 can be transformed into the form $D_1 + \sqrt{-1}x_1^k D_n$ in a neighborhood of $(0, \sqrt{-1}dx_n) \in \sqrt{-1}T^* \mathbb{R}^n$ with a positive odd integer k (cf. [5]). Theorem 2 generalizes our previous result (Corollary of [4]) which corresponds to the case k=1. To prove Theorem 2, we use different methods from those sketched in [4]; Schapira's theory of positivity (cf. [6]) enables us to reduce the problem of analytic hypo-ellipticity to that of propagation of micro-analyticity of solutions of such equations as treated in §1.

§ 1. Propagation of regularity. Set $X = C^n \ni z = (z_1, \dots, z_n)$ and $M = \mathbb{R}^n \ni x = (x_1, \dots, x_n)$. We denote by $T^*X = \{(z, \zeta) \in C^n \times C^n\}$ the cotangent bundle of X, by $T^*_M X = \{(x, \sqrt{-1\eta}) ; x \in \mathbb{R}^n, \eta \in \mathbb{R}^n\}$ the conormal bundle of M in X, and by C_M the sheaf on $T^*_M X$ of microfunctions. For holomorphic functions f and g defined on an open subset of T^*X , we set

$$H_{f} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial \zeta_{j}} \frac{\partial}{\partial z_{j}} - \frac{\partial f}{\partial z_{j}} \frac{\partial}{\partial \zeta_{j}} \right)$$

and $\{f, g\} = H_{f}g$, and denote by f^{c} the complex conjugate of f with respect to $T_{M}^{*}X$; i.e., f^{c} is the unique holomorphic function such that $f^{c} = \bar{f}$ holds on $T_{M}^{*}X$. We denote by σ the principal symbol of a microdifferential operator of finite order, and by σ_{j} the symbol of order j when the operator is of order at most j.

Let P_1 and P_2 be microdifferential operators of order l_1 and l_2 respectively defined in a neighborhood of $p \in T^*_M X - M$. Set $l = l_1 + l_2$ and let $Q = (Q_{ij})$ be an $m \times m$ matrix of microdifferential operators of order

at most l-1. We assume

(A.1) $\sigma(P_1)(p) = \sigma(P_2)(p) = 0,$ (A.2) $\{\sigma(P_1), \sigma(P_2)\}(p) \neq 0.$ Let $\lambda_1, \dots, \lambda_m$ be the eigenvalues of the matrix $(\sigma_{l-1}(Q_{ij})(p)/\{\sigma(P_1), \sigma(P_2)\}(p)).$

Then we also assume

(A.3) $\lambda_j \notin \{0, 1, 2, \dots\}$ for $j=1, \dots, m$. Set $V_j = \{(z, \zeta) \in T^*X; \sigma(P_j)(z, \zeta) = 0\}$ and $V_j^c = \{(z, \zeta) \in T^*X; \sigma(P_j)^c(z, \zeta) = 0\}$ for j=1, 2.

T. ÔAKU

In this section we assume

(**R**) $V_1 = V_1^c$.

Then $V_1^R = V_1 \cap T_M^*X$ is a 1-codimensional real analytic submanifold of T_M^*X . There is a real valued real analytic function f defined in a neighborhood (in T_M^*X) of p such that $V_1^R = \{f=0\}$, that df and $\eta_1 dx_1 + \cdots + \eta_n dx_n$ are linearly independent, and that f is homogeneous with respect to η . Then each maximal integral curve of the real vector field $\sqrt{-1}H_f$ on V_1^R is called a bicharacteristic of V_1^R .

Now let $b_1(p)$ be the bicharacteristic of V_1^R through p. Then we have the following

Theorem 1. Set $P = P_1P_2I_m + Q$, where P_1, P_2, Q satisfy the conditions (A.1)–(A.3) and (R). Let u be a column vector of m microfunctions defined in a neighborhood of p such that Pu=0 and that u vanishes on $b_1(p) - \{p\}$. Then u vanishes on $b_1(p)$.

Now we give a sketch of the proof. Firstly, we may assume that $P_1 = x_1$ and that $p = (0, \sqrt{-1}dx_n)$ by a real quantized contact transformation. Set $N = \{x \in M ; x_1 = 0\}$ and $Y = \{z \in X ; z_1 = 0\}$. We define the map $\rho: T_M^*X|_N \to T_N^*Y$ by $\rho(0, x', \sqrt{-1}\eta) = (x', \sqrt{-1}\eta')$, where $x' = (x_2, \dots, x_n)$ and $\eta' = (\eta_2, \dots, \eta_n)$. Put $p' = (0, \sqrt{-1}dx_n) \in T_N^*Y$. Then it is sufficient to prove the following proposition in view of Theorem 2.5 of [3]. (We use the notation $D_j = \partial/\partial x_j$.)

Proposition. Set

$$P = x_1(D_1I_m - A(x, D')) - B(x', D');$$

here $A = (A_{ij})$ and $B = (B_{ij})$ are $m \times m$ matrices of microdifferential operators defined in a neighborhood of $\rho^{-1}(p')$ such that

(i) the order of $A_{ij} \leq 1$, the order of $B_{ij} \leq 0$.

(ii) $[x_1, A] = [x_1, B] = [D_1, B] = 0.$

(iii) $\mu_i \notin \mathbb{Z}$ and $\mu_i - \mu_j \notin \mathbb{Z} - \{0\}$ hold for $1 \leq i, j \leq m$, or else $\mu_1 = \cdots = \mu_m \in \{-1, -2, -3, \cdots\}$ holds, where μ_1, \cdots, μ_m are the eigenvalues of $\sigma_0(B)(p')$.

Under these assumptions, the homomorphism

$$P: (\rho_1 \mathcal{C}_M)_{n'}^m \longrightarrow (\rho_1 \mathcal{C}_M)_{n'}^m$$

is injective.

To prove this proposition, we use the sheaf $C_{M+|X}$ and the theory

52

of mild hyperfunctions both developed by Kataoka (cf. [1], [2]).

Example 1. Put $x = (x_1, x_2) \in \mathbb{R}^2$ and set

 $P = D_1(D_1 - \sqrt{-1}x_1D_2) + a_1(x)D_1 + a_2(x)D_2 + b(x);$

here a_1, a_2, b are real analytic functions defined in an open subset U of \mathbb{R}^2 . Assume that $a_2(0, x_2) \notin \{0, -\sqrt{-1}, -2\sqrt{-1}, \cdots\}$ for $(0, x_2) \in U$. Let u be a hyperfunction defined in U such that Pu is real analytic in U and that u is real analytic in $\{x \in U; x_1 \neq 0\}$. Then u is real analytic in U.

§ 2. Analytic hypo-ellipticity. Let P_1, P_2, Q be as in §1 satisfying (A.1)-(A.3). In this section, we assume

(H) $V_1 \cap V_1^c$ is non-singular, and the pull back of $d\zeta_1 \wedge dz_1 + \cdots + d\zeta_n \wedge dz_n$ to $V_1 \cap V_1^c$ is non-degenerate on a neighborhood of p; there are a positive odd integer k and a complex number a such that

$$\begin{array}{ll} (H_{\sigma(P_1)})^j \sigma(P_1)^c(p) = 0 & \text{for } 0 \leq j \leq k-1, \\ a^{k-1} (H_{\sigma(P_1)})^k \sigma(P_1)^c(p) < 0, \\ (k-1) (d(a\sigma(P_1)) + d(a\sigma(P_1))^c)(p) = 0. \end{array}$$

Theorem 2. Under the assumptions (A.1)–(A.3) and (H), the homomorphism

$$P_1P_2I_m + Q: (\mathcal{C}_M)_p^m \longrightarrow (\mathcal{C}_M)_p^m$$

is injective.

We give a sketch of the proof. First, note that P_1 is equivalent to the operator $D_1 + \sqrt{-1}x_1^k D_n$ with $p = (0, \sqrt{-1}dx_n)$ by a real quantized contact transformation (cf. [5]). Then it is easy to see that there is a complex contact transformation φ such that $(T_M^*X, C^*\varphi(T_M^*X))$ is positive at p in the sense of Schapira [6], $T_M^*X \cap \varphi(T_M^*X) = \{(x, \sqrt{-1}\eta) \in T_M^*X; x_1=0\}$, and $\zeta_1 \circ \varphi = \zeta_1 + \sqrt{-1}z_1^k\zeta_n$. Then Theorem 2 follows from Theorem 1 in view of Corollaire 3.4 of [6].

Example 2. Put $x = (x_1, x_2) \in \mathbb{R}^2$ and set $P = (D_1 + \sqrt{-1}x_1^k D_2)(D_1^k - \sqrt{-1}x_1 D_2^k) + \sum_{\alpha = (\alpha_1, \alpha_2) \ge 0, |\alpha| \le l} a_{\alpha}(x) D_1^{\alpha_1} D_2^{\alpha_2};$

here $\alpha_a(x)$ are real analytic functions defined in an open subset U of \mathbb{R}^2 , and k, l are positive odd integers. Assume that $a_{(0,l)}(0, x_2) \notin \sqrt{-1Z}$ for $(0, x_2) \in U$. Then P is analytic hypo-elliptic in U; i.e., if u is a hyperfunction defined in an open subset U' of U such that Pu is real analytic in U', then u is real analytic in U'.

References

- K. Kataoka: On the theory of Radon transformations of hyperfunctions. J. Fac. Sci. Univ. Tokyo, 28, 331-413 (1981).
- [2] —: Micro-local theory of boundary value problems. I. ibid., 27, 355-399 (1980).
- [3] T. Ôaku: A canonical form of a system of microdifferential equations with non-involutory characteristics and branching of singularities. Invent. math., 65, 491-525 (1982).

T. Ôaku

- [4] T. Ôaku: Analytic hypo-ellipticity of a system of microdifferential equations with non-involutory characteristics. Proc. Japan Acad., 57A, 438-441 (1981).
- [5] M. Sato, T. Kawai, and M. Kashiwara: On the structure of single linear pseudo-differential equations. Proc. Japan Acad., 48, 643-646 (1972).
- [6] P. Schapira: Conditions de positivité dans une variété symplectique complexe. Application à l'étude des microfonctions. Ann. scient. Éc. Norm. Sup. (4), 14, 121-139 (1981).

54