13. Construction of Integral Basis. I

By Kosaku Okutsu

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1982)

Let f(x) be a monic irreducible separable polynomial of degree nin o[x], where o is a principal ideal domain. Let k be the quotient field of o, and θ one of the roots of f(x) in an algebraic closure of \bar{k} of k. The purpose of this series of papers is to give an explicit formula for an o-basis of the integral closure o_k of o in $K = k(\theta)$. We begin with considering the "local case".

§ 1. Throughout this section, let \circ be a discrete valuation ring with maximal ideal \mathfrak{p} , k its quotient field, and assume that k is complete under the valuation induced by \mathfrak{p} . Let π be a generator of \mathfrak{p} . We denote by $| \ |$ a fixed valuation on the algebraic closure \bar{k} of k, which is an extension of the valuation corresponding to \mathfrak{p} . Let f(x)be a monic irreducible separable polynomial in $\mathfrak{o}[x]$ of degree n, and θ one of the roots of f(x) in \bar{k} . For a polynomial $h(x) = a_0 x^m + \cdots + a_m$ in $\mathfrak{o}[x]$, we put $|h(x)| = \sup_{i=0,\dots,m} |a_i|$. Then we have the following

Proposition 1. For any positive integer m(<n), there exists a monic polynomial $g_m(x)$ of degree m in $\mathfrak{o}[x]$, having the following property:

For any polynomial g(x) of degree m in $\mathfrak{o}[x]$, we have

$$|g_m(heta)| \leq rac{|g(heta)|}{|g(x)|}$$

Definition. We will call any monic polynomial $g_m(x)$ with the property in the Proposition 1 a *divisor polynomial* of degree m of θ , or of f(x). We put $\mu_m = \operatorname{ord}_{\mathfrak{p}}(g_m(\theta))$, and $\nu_m = [\mu_m]$, where [] is the Gauss symbol. ν_m will be called the *integrality index* of degree m of θ , or of f(x). $(g_m(x)$ is not uniquely determined by θ and m, but it is clear that ν_m does not depend on the choice of $g_m(x)$.)

Theorem 1. We denote by \mathfrak{o}_k the valuation ring in $K = k(\theta)$. Let $g_m(x), \nu_m$ be a divisor polynomial and the integrality index of degree m of θ ($m=1, 2, \dots, n-1$), and put $g_0(x)=1, \nu_0=0$. Then we have $\mathfrak{o}_K = \sum_{m=0}^{n-1} \mathfrak{o}((g_m(\theta))/\pi^{\nu_m})$.

Proof. For any $m=0, 1, \dots, n-1$ we have $|(g_m(\theta))/\pi^{\nu_m}| \le 1$, so that $\sum_{m=0}^{n-1} \mathfrak{o}((g_m(\theta))/\pi^{\nu_m}) \subset \mathfrak{o}_K$. As $\mathfrak{o}_K \subset \mathfrak{o}[\theta]/\pi^i$ for some positive integer l, there exists, for any element α of \mathfrak{o}_K , some polynomial h(x) in $\mathfrak{o}[x]$ such that $\alpha = h(\theta)/\pi^i$, where the degree d of h(x) is less than n. As $g_m(x)$ is monic, we can find d+1 elements r_0, \dots, r_d of \mathfrak{o} such that h(x)

 $\sum_{m=0}^{d} r_m g_m(x). \quad \text{As } |h(\theta)|/|h(x)| \ge |g_d(\theta)|, \text{ we have } |h(\theta)| \ge |r_d g_d(\theta)|. \text{ Then } |h(\theta)/\pi^i| \le 1 \text{ implies } |(r_d/\pi^{l-\nu d}) \cdot (g_d(\theta)/\pi^{\nu d})| \le 1. \text{ Put } t = \operatorname{ord}_{\mathfrak{p}}(r_d/\pi^{l-\nu d}).$ Now assume t is negative. As t is an integer, we have $t \le -1$. Then $0 \le \operatorname{ord}_{\mathfrak{p}}(g_d(\theta)/\pi^{\nu d}) < 1$ implies $\operatorname{ord}_{\mathfrak{p}}((r_d/\pi^{l-\nu d}) \cdot (g_d(\theta)/\pi^{\nu d})) < 0$ in contradiction with $r_d g_d(\theta)/\pi^l \in \mathfrak{o}_K$. Thus we have $r_d/\pi^{l-\nu d} \in \mathfrak{o}$, and so $(\sum_{m=0}^{d-1} r_m g_m(\theta))/\pi^l \in \mathfrak{o}_K.$ Repeating this argument, we obtain $r_m/\pi^{l-\nu m} \in \mathfrak{o}$ for $m = 0, \cdots, d-1$. Thus $\alpha \in \sum_{m=0}^{n-1} \mathfrak{O}(g_m(\theta)/\pi^{\nu m})$. This proves the theorem.

§2. Denote the maximal ideal of \mathfrak{o}_{κ} with \mathfrak{P} , the residue class degree and the ramification index of \mathfrak{P} over k with f, e, respectively. We shall show that f, e can be obtained from the knowledge of ν_1, \dots, ν_{n-1} .

Put $S_m = \{t \mid 0 \le t \le n-1, \mu_t - [\mu_t] = \mu_m - [\mu_m]\}$ for any m with $0 \le m \le n-1$, and $\{0, 1, \dots, n-1\} = S_{m_0} \cup S_{m_1} \cup \dots \cup S_{m_l}$ (direct sum), and assume $\mu_{m_i} - [\mu_{m_i}] < \mu_{m_j} - [\mu_{m_j}]$ for any pair i, j with $0 \le i < j \le l$. Then we have,

Proposition 2. For any *m* and $t \in S_m$, $(g_t(\theta)/\pi^{\nu_t})((g_m(\theta)/\pi^{\nu_m})^{-1})$ is an element of \mathfrak{o}_{κ} and $\{(g_t(\theta)/\pi^{\nu_t})((g_m(\theta)/\pi^{\nu_m})^{-1}) \mod \mathfrak{P} | t \in S_m\}$ are linearly independent over $\mathfrak{o}/\mathfrak{p}$.

Proposition 3. For any j with $1 \le j \le l$

$$\frac{g_{m_j}(\theta)}{\pi^{\nu_{m_j}}}\mathfrak{o}_K = \sum_{i=0}^{j-1}\sum_{t\in S_{m_i}}\mathfrak{o}_{-\frac{g_i(\theta)}{\pi^{\nu_t-1}}} + \sum_{i=j}^l\sum_{t\in S_{m_i}}\mathfrak{o}_{-\frac{g_i(\theta)}{\pi^{\nu_t}}}.$$

We omit the proof of these propositions, which will be published elsewhere. The next theorem follows them easily.

Theorem 2. (i) The number l+1 of distinct S_{m_i} 's is equal to e. (ii) For any $i=0, 1, \dots, e-1$, the number of elements of S_{m_i} is f. (iii) $\mu_{m_i}-[\mu_{m_i}]=i/e$ $(i=0, 1, \dots, e-1)$.

$$\mathfrak{o}_{K} = \sum_{i=0}^{j-1} \sum_{t \in S_{m_{j}}} \mathfrak{o}\pi \cdot \left(\frac{g_{m_{j}}(\theta)}{\pi^{\nu_{m_{j}}}}\right)^{-1} \frac{g_{t}(\theta)}{\pi^{\nu_{t}}} + \sum_{i=j}^{l} \sum_{t \in S_{m_{i}}} \mathfrak{o}\left(\frac{g_{m_{i}}(\theta)}{\pi^{\nu_{m_{j}}}}\right)^{-1} \cdot \frac{g_{t}(\theta)}{\pi^{\nu_{t}}}$$

for any j with $1 \le j \le l$. So it follows from Proposition 2 that

$$\left\{ \left(\frac{g_{mj}(\theta)}{\pi^{\nu m_j}} \right)^{-1} \frac{g_t(\theta)}{\pi^{\nu t}} \bmod \mathfrak{P} | t \in S_{m_j} \right\}$$

is a base of the vector space $\mathfrak{o}_{\kappa}/\mathfrak{P}$ over $\mathfrak{o}/\mathfrak{P}$. Thus the number of elements of S_{m_j} should be equal to f. As $n = e \cdot f$, we have l = e - 1. And as $0 \le \mu_{m_i} - [\mu_{m_i}] \le 1$, $e(\mu_{m_i} - [\mu_{m_i}])$ is a natural number, and as $\mu_{m_i} - [\mu_{m_i}] \ne \mu_{m_j} - [\mu_{m_j}]$ for any pair $i \ne j$, we obtain $\mu_{m_i} - [\mu_{m_i}] = i/e$. This proves the theorem.

On the discriminant of o_{κ} , we obtain the following.

Theorem 3. Let $D(1, \theta, \dots, \theta^{n-1})$ be the discriminant of $\mathfrak{o}[\theta]$ and $D_{K/k}$ the discriminant of \mathfrak{o}_{K} over k. Then

$$D_{K/k} = \pi^{-2(\sum_{m=1}^{n-1} \nu_m)} D(1, \theta, \dots, \theta^{n-1}).$$

= $\pi^{f \cdot (e-1) - 2 \sum_{m=1}^{n-1} \mu_m} D(1, \theta, \dots, \theta^{n-1}).$

No. 1]

In Part II, we will give an explicit construction of the divisor polynomial f(x).

References

- [1] Berwick, W. E. H.: Integral basis. Cambridge Tracts in Mathematics and Mathematical Physics, 22 (1927).
- [2] Zassenhaus, Hans: Ein Algorithmus zur Berechnung einer Minimalbasis über gegebener Ordnung, Funktionalanalysis, Approximationstheorie. Numerische Mathematik (Oberwolfach, 1965), pp. 90–103, Birkhäuser, Basel (1967).