13. Construction of Integral Basis. I

By Kōsaku OKutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1982)

Let $f(x)$ be a monic irreducible separable polynomial of degree n in $\mathfrak{o}[x]$, where \mathfrak{o} is a principal ideal domain. Let k be the quotient field of \mathfrak{o}, and θ one of the roots of $f(x)$ in an algebraic closure of \bar{k} of k. The purpose of this series of papers is to give an explicit formula for an \mathfrak{o}-basis of the integral closure \mathfrak{o}_{k} of \mathfrak{o} in $K=k(\theta)$. We begin with considering the "local case".
§ 1. Throughout this section, let \mathfrak{o} be a discrete valuation ring with maximal ideal \mathfrak{p}, k its quotient field, and assume that k is complete under the valuation induced by \mathfrak{p}. Let π be a generator of \mathfrak{p}. We denote by | | a fixed valuation on the algebraic closure \bar{k} of k, which is an extension of the valuation corresponding to \mathfrak{p}. Let $f(x)$ be a monic irreducible separable polynomial in $\mathfrak{o}[x]$ of degree n, and θ one of the roots of $f(x)$ in \bar{k}. For a polynomial $h(x)=a_{0} x^{m}+\cdots+a_{m}$ in $\mathfrak{0}[x]$, we put $|h(x)|=\sup _{i=0, \ldots, m}\left|a_{i}\right|$. Then we have the following

Proposition 1. For any positive integer $m(<n)$, there exists a monic polynomial $g_{m}(x)$ of degree m in $\mathfrak{o}[x]$, having the following property:

For any polynomial $g(x)$ of degree m in $\mathfrak{0}[x]$, we have

$$
\left|g_{m}(\theta)\right| \leq \frac{|g(\theta)|}{|g(x)|}
$$

Definition. We will call any monic polynomial $g_{m}(x)$ with the property in the Proposition 1 a divisor polynomial of degree m of θ, or of $f(x)$. We put $\mu_{m}=\operatorname{ord}_{\mathfrak{p}}\left(g_{m}(\theta)\right)$, and $\nu_{m}=\left[\mu_{m}\right]$, where [] is the Gauss symbol. ν_{m} will be called the integrality index of degree m of θ, or of $f(x)$. ($g_{m}(x)$ is not uniquely determined by θ and m, but it is clear that ν_{m} does not depend on the choice of $g_{m}(x)$.)

Theorem 1. We denote by o_{k} the valuation ring in $K=k(\theta)$. Let $g_{m}(x), \nu_{m}$ be a divisor polynomial and the integrality index of degree m of $\theta(m=1,2, \cdots, n-1)$, and put $g_{0}(x)=1, \nu_{0}=0$. Then we have \mathfrak{o}_{K} $=\sum_{m=0}^{n-1} \mathrm{~d}\left(\left(g_{m}(\theta)\right) / \pi^{\nu m}\right)$.

Proof. For any $m=0,1, \cdots, n-1$ we have $\left|\left(g_{m}(\theta)\right) / \pi^{\nu m}\right| \leq 1$, so that $\sum_{m=0}^{n-1} \mathfrak{p}\left(\left(g_{m}(\theta)\right) / \pi^{\nu m}\right) \subset \mathfrak{o}_{K}$. As $\mathfrak{o}_{K} \subset \mathfrak{o}[\theta] / \pi^{l}$ for some positive integer l, there exists, for any element α of \mathfrak{o}_{K}, some polynomial $h(x)$ in $\mathfrak{o}[x]$ such that $\alpha=h(\theta) / \pi^{l}$, where the degree d of $h(x)$ is less than n. As $g_{m}(x)$ is monic, we can find $d+1$ elements r_{0}, \cdots, r_{d} of \mathfrak{o} such that $h(x)$
$\sum_{m=0}^{d} r_{m} g_{m}(x)$. As $|h(\theta)| /|h(x)| \geq\left|g_{d}(\theta)\right|$, we have $|h(\theta)| \geq\left|r_{d} g_{d}(\theta)\right|$. Then $\left|h(\theta) / \pi^{l}\right| \leq 1$ implies $\left|\left(r_{a} / \pi^{l-\nu a}\right) \cdot\left(g_{d}(\theta) / \pi^{\nu d}\right)\right| \leq 1$. Put $t=\operatorname{ord}_{p}\left(r_{a} / \pi^{l-\nu a}\right)$. Now assume t is negative. As t is an integer, we have $t \leq-1$. Then $0 \leq \operatorname{ord}_{\mathfrak{p}}\left(g_{d}(\theta) / \pi^{\nu d}\right)<1$ implies $\operatorname{ord}_{\mathfrak{p}}\left(\left(r_{d} / \pi^{l-\nu a}\right) \cdot\left(g_{d}(\theta) / \pi^{\nu d}\right)\right)<0$ in contradiction with $r_{d} g_{a}(\theta) / \pi^{l} \in \mathfrak{o}_{K}$. Thus we have $r_{a} / \pi^{l-\nu a} \in \mathfrak{o}$, and so $\left(\sum_{m=0}^{d-1} r_{m} g_{m}(\theta)\right) / \pi^{l} \in \mathfrak{D}_{K}$. Repeating this argument, we obtain $r_{m} / \pi^{l-\nu_{m}} \in \mathfrak{o}$ for $m=0, \cdots, d-1$. Thus $\alpha \in \sum_{m=0}^{n-1} \mathfrak{D}\left(g_{m}(\theta) / \pi^{\nu}\right)$. This proves the theorem.
§2. Denote the maximal ideal of \mathfrak{o}_{K} with \mathfrak{P}, the residue class degree and the ramification index of \mathfrak{B} over k with f, e, respectively. We shall show that f, e can be obtained from the knowledge of ν_{1}, \cdots, ν_{n-1}.

Put $S_{m}=\left\{t \mid 0 \leq t \leq n-1, \mu_{t}-\left[\mu_{t}\right]=\mu_{m}-\left[\mu_{m}\right]\right\}$ for any m with $0 \leq m$ $\leq n-1$, and $\{0,1, \cdots, n-1\}=S_{m_{0}} \cup S_{m_{1}} \cup \cdots \cup S_{m_{l}}$ (direct sum), and assume $\mu_{m_{i}}-\left[\mu_{m_{i}}\right]<\mu_{m_{j}}-\left[\mu_{m_{j}}\right]$ for any pair i, j with $0 \leq i<j \leq l$. Then we have,

Proposition 2. For any m and $t \in S_{m},\left(g_{t}(\theta) / \pi^{\nu t}\right)\left(\left(g_{m}(\theta) / \pi^{\nu_{m}}\right)^{-1}\right)$ is an element of \mathfrak{o}_{K} and $\left\{\left(g_{t}(\theta) / \pi^{\nu \nu}\right)\left(\left(g_{m}(\theta) / \pi^{\nu m}\right)^{-1}\right) \bmod \mathfrak{P} \mid t \in S_{m}\right\}$ are linearly independent over $\mathfrak{o} / \mathfrak{p}$.

Proposition 3. For any j with $1 \leq j \leq l$

$$
\frac{g_{m_{j}}(\theta)}{\pi^{\nu M J}} \mathfrak{o}_{K}=\sum_{i=0}^{j-1} \sum_{t \in S_{m_{i}}} \mathfrak{o} \frac{g_{t}(\theta)}{\pi^{\nu t-1}}+\sum_{i=j}^{i} \sum_{t \in S_{m_{t}}} \mathfrak{o} \frac{g_{t}(\theta)}{\pi^{\nu t}}
$$

We omit the proof of these propositions, which will be published elsewhere. The next theorem follows them easily.

Theorem 2. (i) The number $l+1$ of distinct $S_{m_{i}}$'s is equal to e.
(ii) For any $i=0,1, \cdots, e-1$, the number of elements of $S_{m_{i}}$ is f.
(iii) $\mu_{m_{i}}-\left[\mu_{m_{i}}\right]=i / e(i=0,1, \cdots, e-1)$.

Proof. From Propositions 3 follows

$$
\mathfrak{o}_{K}=\sum_{i=0}^{j-1} \sum_{t \in S_{m_{j}}} \mathfrak{o} \pi \cdot\left(\frac{g_{m_{i}}(\theta)}{\pi^{\nu m_{j}}}\right)^{-1} \frac{g_{t}(\theta)}{\pi^{\nu t}}+\sum_{i=j}^{l} \sum_{t \in S_{m_{i}}} \mathfrak{o}\left(\frac{g_{m_{i}}(\theta)}{\pi^{\nu m_{j}}}\right)^{-1} \cdot \frac{g_{t}(\theta)}{\pi^{\nu t}}
$$

for any j with $1 \leq j \leq l$. So it follows from Proposition 2 that

$$
\left\{\left.\left(\frac{g_{m_{\jmath}}(\theta)}{\pi^{\nu_{j}}}\right)^{-1} \frac{g_{t}(\theta)}{\pi^{\nu t}} \bmod \mathfrak{P} \right\rvert\, t \in S_{m_{j}}\right\}
$$

is a base of the vector space $\mathfrak{o}_{K} / \mathfrak{F}$ over $\mathfrak{o} / \mathfrak{p}$. Thus the number of elements of $S_{m_{j}}$ should be equal to f. As $n=e \cdot f$, we have $l=e-1$. And as $0 \leq \mu_{m_{i}}-\left[\mu_{m_{i}}\right]<1$, $e\left(\mu_{m_{i}}-\left[\mu_{m_{i}}\right]\right)$ is a natural number, and as $\mu_{m_{i}}-\left[\mu_{m_{i}}\right]$ $\neq \mu_{m_{j}}-\left[\mu_{m_{j}}\right]$ for any pair $i \neq j$, we obtain $\mu_{m_{i}}-\left[\mu_{m_{i}}\right]=i / e$. This proves the theorem.

On the discriminant of \mathfrak{o}_{K}, we obtain the following.
Theorem 3. Let $D\left(1, \theta, \cdots, \theta^{n-1}\right)$ be the discrimiant of $\mathrm{o}[\theta]$ and $D_{K / k}$ the discriminant of \mathfrak{o}_{K} over k. Then

$$
\begin{aligned}
D_{K / k} & =\pi^{-2\left(\sum_{m=1}^{n-1} \nu_{m}\right)} D\left(1, \theta, \cdots, \theta^{n-1}\right) \\
& =\pi^{f \cdot(e-1)-2 \sum_{m=1}^{n-1} \mu_{m}} D\left(1, \theta, \cdots, \theta^{n-1}\right) .
\end{aligned}
$$

In Part II, we will give an explicit construction of the divisor polynomial $f(x)$.

References

[1] Berwick, W. E. H.: Integral basis. Cambridge Tracts in Mathematics and Mathematical Physics, 22 (1927).
[2] Zassenhaus, Hans: Ein Algorithmus zur Berechnung einer Minimalbasis über gegebener Ordnung, Funktionalanalysis, Approximationstheorie. Numerische Mathematik (Oberwolfach, 1965), pp. 90-103, Birkhäuser, Basel (1967).

