12. On Hilbert Modular Forms. II

By Shōyū Nagaoka
Department of Mathematics, Faculty of Science, Hokkaido University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1982)

Introduction. In his paper [5], J. Igusa gave a minimal set of generators over Z of the graded ring of Siegel modular forms of genus two whose Fourier coefficients lie in Z. Also, some problems on the finite generation of an algebra of modular forms were discussed by W. L. Baily, Jr. in his recent paper [1]. The author studied the structure of graded $Z[1 / 2]$-algebra of symmetric Hilbert modular forms for $\boldsymbol{Q}(\sqrt{5})$ in his first paper [6]. The purpose of this second paper is to describe the minimal sets of generators over Z of the graded rings of symmetric Hilbert modular forms with integral Fourier coefficients for real quadratic fields $\boldsymbol{Q}(\sqrt{2})$ and $\boldsymbol{Q}(\sqrt{5})$. The detailed results with their complete proofs will appear elsewhere.
§ 1. Hilbert modular forms for real quadratic fields. Let K be a real quadratic field and let \mathfrak{o}_{K} denote the ring of integers in K. Let \mathfrak{S} denote the upper-half plane and we put $\mathscr{S e}^{2}=\mathfrak{K} \times \mathfrak{F}$. We denote by $A_{C}\left(\Gamma_{K}\right)_{k}$ the set of symmetric Hilbert modular forms of weight k for K, where $\Gamma_{K}=S L\left(2, \mathfrak{o}_{K}\right)$ is the Hilbert modular group. Let δ_{K} denote the different of K. Then any element in $A_{C}\left(\Gamma_{K}\right)_{k}$ has the following Fourier expansion:

$$
f(\tau)=\sum_{\nu \in b_{\boldsymbol{K}}^{-1}} a_{f}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)],
$$

where the sum extends over the elements ν in $\mathfrak{D}_{\boldsymbol{K}}{ }^{1}$ which are totally positive or 0 . For any subring R of C, define in $A_{C}\left(\Gamma_{K}\right)_{k}$ the subset

$$
A_{R}\left(\Gamma_{K}\right)_{k}=\left\{f(\tau) \in A_{C}\left(\Gamma_{K}\right)_{k} \mid a_{f}(\nu) \in R \text { for all } \nu \in \mathfrak{D}_{\bar{K}}^{1}, \nu \gg 0 \text { or } 0\right\} .
$$

$\boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}$ is an R-module, and if we put $\boldsymbol{A}_{R}\left(\Gamma_{K}\right)=\oplus_{k \geqq 0} \boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}$, then $A_{R}\left(\Gamma_{K}\right)$ is a graded R-algebra. Next we shall introduce the Eisenstein series $G_{k}(\tau)$ of weight k for Γ_{K}. Let \sim denote an equivalence relation in $\mathfrak{o}_{K} \times \mathfrak{o}_{K}$ defined as follows:

$$
(\alpha, \beta) \sim\left(\alpha^{\prime}, \beta^{\prime}\right) \text { if } \alpha^{\prime}=\varepsilon^{\prime} \alpha, \beta^{\prime}=\varepsilon^{\prime} \beta \text { for some unit } \varepsilon^{\prime} \text { in } K .
$$

For any even integer $k \geqq 2$, we define a series $G_{k}^{\prime}(\tau)$ on $\mathscr{S}_{2}{ }^{2}$ as :

$$
G_{k}^{\prime}(\tau)=\sum_{(\lambda, \mu) \in_{0} \mathbf{o}^{\times_{0} K} / \sim} N(\lambda \tau+\mu)^{-k}, \quad \tau \in \mathscr{S}_{c}^{2} .
$$

where the summation runs through a set of representatives (λ, μ) $\neq(0,0)$. It is well known that the series is absolutely convergent and represents a symmetric Hilbert modular form of weight k for K.

We normalize $G_{k}^{\prime}(\tau)$ as :

$$
G_{k}(\tau)=\zeta_{K}(k)^{-1} \cdot G_{k}^{\prime}(\tau),
$$

where $\zeta_{K}(s)$ is the Dedekind zeta function for K. The function $G_{k}(\tau)$ is called the normalized Eisenstein series of weight k for Γ_{K} and it has the following Fourier expansion:

$$
\begin{aligned}
& G_{k}(\tau)=1+\kappa_{k} \sum_{\substack{\nu \in b^{-1} \\
\nu \gg 0}} \sigma_{k-1}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
& \kappa_{k}=\zeta_{K}(k)^{-1} \cdot(2 \pi i)^{2 k} \cdot[(k-1)!]^{-2} \cdot d_{K}^{1 / 2-k}, \\
& \sigma_{k-1}(\nu)=\sum_{(\nu)\rangle\rangle_{K} \subset \mathfrak{c b}}|N(\mathfrak{b})|^{k-1},
\end{aligned}
$$

where d_{K} is the discriminant of K. From Hecke's result it follows that

$$
\zeta_{K}(k)=\pi^{2 k} \cdot d_{\boldsymbol{K}}^{1 / 2} \cdot(\text { rational number }),
$$

so we see that $G_{k}(\tau) \in A_{Q}\left(\Gamma_{K}\right)_{k}$. Now we denote with $A_{C}(S L(2, Z))_{m}$ the complex vector space of all elliptic modular forms of weight m. (We define $A_{R}(S L(2, Z))_{m}, A_{R}(S L(2, Z)$) in similar way). For any function $f(\tau)$ on \mathscr{S}^{2}, we define a function $\boldsymbol{D}(f)(z)$ on $\mathfrak{S c}$ by $\boldsymbol{D}(f)(z)=f((z, z))$. By definition, if $f(\tau)$ is a function in $A_{C}\left(\Gamma_{K}\right)_{k}$, then $f((z, z)) \in A_{C}(S L(2, Z))_{2 k}$. Furthermore, if we assume that the function $f(\tau)$ has the Fourier expansion of the form

$$
f(\tau)=\sum a_{f}(\nu) \exp [2 \pi i t r(\nu \tau)]
$$

then $\boldsymbol{D}(f)(z)$ has the following Fourier expansion:

$$
D(f)(z)=\sum_{n=0}^{\infty} c_{f}(n) \exp (2 \pi i n z), \quad c_{f}(n)=\sum_{t r(\nu)=n} a_{f}(\nu)
$$

From this result, we see also that, if $f \in \boldsymbol{A}_{R}\left(\Gamma_{K}\right)_{k}$, then $\boldsymbol{D}(f)$ $\in A_{R}(S L(2, Z))_{2 k}$.
§2. Main results. In this section, we shall state the main results. Namely, we give the minimal sets of generators over Z of $\boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{K}\right)$ for $\boldsymbol{K}=\boldsymbol{Q}(\sqrt{2})$ and $\boldsymbol{Q}(\sqrt{5})$. Let $E_{k}(z)$ be the normalized Eisenstein series of weight k for $S L(2, Z)$ and $\Delta(z)$ be a cusp form of weight 12 defined by $\Delta(z)=2^{-6} \cdot 3^{-3}\left(E_{4}^{3}(z)-E_{6}^{2}(z)\right)$. It is well known that $\Delta(z)$ has the expression: $\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}, q=\exp (2 \pi i z)$.
(1) The case $K=\boldsymbol{Q}(\sqrt{2})$. In this case, we have $d_{K}=8, \mathfrak{D}_{K}=(2 \sqrt{2})$. The first few examples of Fourier expansions of the Eisenstein series $G_{k}(\tau)$ are given as follows:

$$
\begin{aligned}
& G_{2}(\tau)=1+2^{4} \cdot 3 \sum \sigma_{1}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
& G_{4}(\tau)=1+2^{5} \cdot 3 \cdot 5 \cdot 11^{-1} \sum \sigma_{3}(\nu) \exp [2 \pi i t r(\nu \tau)], \\
& G_{6}(\tau)=1+2^{4} \cdot 3^{2} \cdot 7 \cdot 19^{-2} \sum \sigma_{5}(\nu) \exp [2 \pi i t r(\nu \tau)],
\end{aligned}
$$

(e.g., cf. [2], p. 321).

Proposition 1.1. Under the above notations, we have

$$
D\left(G_{2}\right)=E_{4}, \quad D\left(G_{4}\right)=E_{8}=E_{4}^{2}, \quad D\left(G_{2}^{3}-G_{6}\right)=2^{7} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 19^{-2} \Delta
$$

Now we put

$$
\begin{aligned}
V_{2}= & G_{2}, \quad V_{4}=2^{-6} \cdot 3^{-2} \cdot 11\left(G_{2}^{2}-G_{4}\right), \\
V_{6}= & 2^{-8} \cdot 3^{-3} \cdot 13^{-1} \cdot 1471 G_{2}^{3}-2^{-8} \cdot 3^{-1} \cdot 5^{-1} \cdot 13^{-1} \cdot 11 \cdot 67 G_{2} G_{4} \\
& -2^{-7} \cdot 3^{-3} \cdot 5^{-1} \cdot 13^{-1} \cdot 19^{2} G_{6} .
\end{aligned}
$$

Proposition 1.2. The above-defined three modular forms have integral Fourier coefficients, i.e., $V_{k} \in A_{Z}\left(\Gamma_{K}\right)_{k}$ for $k=2,4,6$. Furthermore, $\boldsymbol{D}\left(V_{2}\right)=E_{4}, D\left(V_{4}\right)=0, D\left(V_{6}\right)=\Delta$.

We note that the forms V_{4} and V_{6} have the expressions by the theta functions.

Theorem 1. The elements $\boldsymbol{V}_{2}, \boldsymbol{V}_{4}, \boldsymbol{V}_{6}$ form a minimal set of generators of $A_{Z}\left(\Gamma_{K}\right)$ over Z.
(2) The case $K=\boldsymbol{Q}(\sqrt{5})$. In this case, $d_{K}=5$ and $\mathfrak{D}_{K}=(\sqrt{5})$. The Fourier expansions of $G_{k}(k=2,4,6,10)$ are given as follows:

$$
\begin{aligned}
G_{2}(\tau) & =1+2^{3} \cdot 3 \cdot 5 \sum \sigma_{1}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
G_{4}(\tau) & =1+2^{4} \cdot 3 \cdot 5 \sum \sigma_{3}(\nu) \exp [2 \pi i \operatorname{tr}(\nu \tau)], \\
G_{6}(\tau) & =1+2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 67^{-1} \sum \sigma_{5}(\nu) \exp [2 \pi i t r(\nu \tau)], \\
G_{10}(\tau) & =1+2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 412751^{-1} \sum \sigma_{9}(\nu) \exp [2 \pi i t r(\nu \tau)] .
\end{aligned}
$$

Proposition 2.1. Under the above definitions, we have

$$
D\left(G_{2}\right)=E_{4}, \quad D\left(G_{2}^{3}-G_{6}\right)=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 67^{-1} \Delta .
$$

We put

$$
\begin{aligned}
& W_{2}=G_{2}, \quad W_{6}=2^{-5} \cdot 3^{-3} \cdot 5^{-2} \cdot 67\left(G_{2}^{3}-G_{6}\right), \\
& W_{10}=2^{-10} \cdot 3^{-5} \cdot 5^{-5} \cdot 7^{-1}\left(412751 G_{10}-5 \cdot 67 \cdot 2293 G_{2}^{2} G_{6}+2^{2} \cdot 3 \cdot 7 \cdot 4231 G_{2}^{5}\right),
\end{aligned}
$$

$$
W_{12}=2^{-2}\left(W_{6}^{2}-W_{2} W_{10}\right)
$$

Proposition 2.2. The four modular forms $W_{2}, W_{6}, W_{10}, W_{12}$ all have integral Fourier coefficients. Furthermore $D\left(W_{2}\right)=E_{4}, D\left(W_{6}\right)$ $=2 \Delta, D\left(W_{10}\right)=0, D\left(W_{12}\right)=\Delta^{2}$.

We should remark that the modular form W_{10} coincides with a cusp form Θ^{2} defined by Gundlach [3] up to constant.

Theorem 2. The elements $W_{2}, W_{6}, W_{10}, W_{12}$ form a minimal set of generators of $\boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{K}\right)$ over \boldsymbol{Z}.

The result of Theorem 2 is a consequence of the fact that $\boldsymbol{D}\left(\boldsymbol{A}_{\boldsymbol{Z}}\left(\Gamma_{K}\right)\right)$ $=Z\left[E_{4}, 2 \Delta, \Delta^{2}\right]$.

References

[1] W. L. Baily, Jr.: A theorem on the finite generation of an algebra of modular forms (1981) (preprint).
[2] K. Doi and T. Miyake: Automorphic Forms and Number Theory. Kinokuniya (1976) (in Japanese).
[3] K. B. Gundlach: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörper $\boldsymbol{Q}(\sqrt{ } \overline{5})$. Math. Ann., 152, 226-256 (1963).
[4] W. F. Hammond: The modular groups of Hilbert and Siegel. Amer. J. Math., 88, 497-515 (1966).
[5] J. Igusa: On the ring of modular forms of degree two over Z. ibid., 101, 149-183 (1979).
[6] S. Nagaoka: On Hilbert modular forms. Proc. Japan Acad., 57A, 426-429 (1981).

