119. Branching of Singularities for Degenerate Hyperbolic Operator and Stokes Phenomena. III

By Kazuo Amano*) and Gen Nakamura**)
(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1982)

1. This note is a continuation of our previous notes [1] and [2]. The aims of this note are to complete our previous result of [2] and to sharpen the results obtained by paraphrasing Shinkai's results [4] for a system to our single equation. The details and further discussions will appear in [3].
2. Assumptions and results. Let $t \in[-T, T], x=\left(x_{1}, \cdots, x_{n}\right)$ $\in \boldsymbol{R}^{n}, D_{t}=\partial /(\sqrt{-1} \partial t), D_{x}=\left(D_{1}, \cdots, D_{n}\right), D_{j}=\partial /\left(\sqrt{-1} \partial x_{j}\right)(1 \leq j \leq n)$ and $P \equiv P\left(t, X, D_{t}, D_{x}\right)$ be an m th order linear partial differential operator of the form:

$$
P=\sum_{j=0}^{m} \sum_{i=0}^{m-j} P_{i, j}\left(t, X, D_{x}\right) D_{t}^{m-j-i},
$$

where each $P_{i, j}(t, x, \xi)$ is a homogeneous polynomial of degree i with respect to $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n}$. For simplicity, we assume all the coefficients have bounded derivatives of any order on [$-T, T] \times R_{x}^{n}$.

We assume the following conditions (A.1)-(A.3) for P which are invariant under change of x variable.
(A.1) $P_{m}(t, x, \tau, \xi)$ is smoothly factorizable as follows:

$$
P_{m}(t, x, \tau, \xi)=\prod_{j=1}^{m}\left(\tau-t^{\ell} \lambda_{j}(t, x, \xi)\right),
$$

where $\ell \in N$ and $\lambda_{j}(t, x, \xi) \in C^{\infty}\left([-T, T] \times \boldsymbol{R}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right)\right)(1 \leq j \leq n)$ are real valued.
(A.2) There exists a constant $C>0$ such that

$$
\left|\lambda_{j}(t, x, \xi)-\lambda_{k}(t, x, \xi)\right| \geq C|\xi|
$$

for any $j \neq k$ and (t, x, ξ).
(A.3) Each $P_{i, j}(t, x, \xi)(i \ell \geq j, m-j-i \geq 0)$ has the property:

$$
P_{i, j}(t, x, \xi)=t^{i \ell-j} \tilde{P}_{i, j}(t, x, \xi)
$$

where $P_{i, j}(t, x, \xi)$ is a homogeneous polynomial of degree i in ξ and its coefficients have bounded derivatives of any order on $[-T, T] \times \boldsymbol{R}_{x}^{n}$.

In order to state our results we need some notations and definitions.

Definitions (Phase functions and double phase functions). For each $j(1 \leq j \leq n)$, define a phase function $\phi_{j}(t, s, x, \xi)$ as the solution of the Cauchy problem :

$$
\partial \phi_{j} / \partial t-t^{\ell} \lambda_{j}\left(t, x, \nabla_{x} \phi_{j}\right)=0,\left.\quad \phi_{j}\right|_{t=s}=x \cdot \xi
$$

[^0]where $x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j}$ for $x=\left(x_{1}, \cdots, x_{n}\right), \xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$. Also, for each $j, k(1 \leq j, k \leq m)$, define a double phase function $\phi_{j, k}(t, s, x, \xi)$ as the solution of the Cauchy problem:
$$
\partial_{t} \phi_{j, k} / \partial t-t^{\ell} \lambda_{j}\left(t, x, \nabla_{x} \phi_{j, k}\right)=0,\left.\quad \phi_{j, k}\right|_{t=0}=\phi_{k}(0, s, x, \xi) .
$$

Remark. If we denote by $T_{j}(t, s)$ and $T_{j, k}(t, s)$ the homogeneous symplectic transformations corresponding to $\phi_{j}(t, s, x, \xi)$ and $\phi_{j, k}(t, s$, $x, \xi)$, then we have $T_{j, k}(t, s)=T_{j}(t, 0) \circ T_{k}(0, s)$.

Notations (Indices m_{i}^{+}related to the growth order of the amplitude). Put $\mu_{i}(x, \xi)=-H_{i}(x, \xi) / G_{i}(x, \xi)$, where

$$
\begin{aligned}
G_{i}(x, \xi)= & \sum_{j=0}^{m-1}(m-j) \lambda_{i}(0, x, \xi)^{m-j-1} \tilde{P}_{j, 0}(0, x, \xi), \\
H_{i}(x, \xi)= & (\ell / 2) \sum_{j=2}^{m-2}(m-j)(m-j-1) \lambda_{i}(0, x, \xi)^{m-j-1} \tilde{P}_{j, 0}(0, x, \xi) \\
& +\sqrt{-1} \sum_{j=1}^{m-1} \lambda_{i}(0, x, \xi)^{m-j-1} \tilde{P}_{j, 1}(0, x, \xi) .
\end{aligned}
$$

Then define $m_{i}^{ \pm}$by $m_{i}^{ \pm}=\sup _{(x, \xi)} \operatorname{Re}\left\{\left(\pm \mu_{i}(x, \xi)\right)\right\}$.
Definitions (Central connection coefficients). Set

$$
L_{0}=\sum_{j=0}^{m} \sum_{i \ell \geq j, m-j-i \geq 0} t^{i l-j} \tilde{P}_{i, j}(0, x, \xi) D_{t}^{m-j-i} .
$$

Let $\exp \left(\sqrt{-1}(\ell+1)^{-1} t^{\ell+1} \lambda_{i}(0, x, \xi)\right) V_{i}^{ \pm}(t, x, \xi)(1 \leq i \leq m)$ be a fundamental system of solutions of L_{0} in $\pm t>0$ with the property :

$$
V_{i}^{ \pm}(t, x, \xi) \simeq e_{i}^{*}(t, x, \xi)=t^{\mu_{i}(x, \xi)} \sum_{r=0}^{\infty} e_{i, r}(x, \xi) t^{-r} \quad \text { as } t \rightarrow \pm \infty
$$

where $e_{i, 0}(x, \xi) \equiv 1$ and the symbol " \simeq " denotes the asymptotic expansion uniform with respect to the parameters $x \in R^{n},(|\xi|=1)$ which is also valid for the derivatives of $V_{i}^{ \pm}(t, x, \xi)$. The asymptotic series for the derivatives of $V_{i}^{ \pm}$are obtained by differentiating e_{i}^{*} formally.

We also define $V_{j, i-1}^{-}(t, x, \xi)$ and $\tilde{V}_{j, i-1}(t, x, \xi)$ by

$$
V_{j, i-1}^{-}(t, x, \xi)=\exp \left(-\sqrt{-1}(\ell+1)^{-1} t^{\ell+1} \lambda_{j}(0, x, \xi)\right) V_{i}^{-}(t, x, \xi)
$$

$\tilde{V}_{j, i-1}(t, x, \xi)=$ the (i, j)-cofactor of matrix

$$
\left(V_{j}^{-}(t, x, \xi) ; \begin{array}{c}
i \downarrow 0, \cdots, m-1 \\
j \rightarrow 1, \cdots, m
\end{array}\right) .
$$

Furthermore we define $U_{i}(t, x, \xi)$ as a solution of the Cauchy problem : $L_{0} U_{i}=0,\left.D_{t}^{h} U_{i}\right|_{t=0}=\delta_{h, i-1}(0 \leq h \leq m-1)$, where $\delta_{h, i}$ denotes Kronecker's delta. Then the central connection coefficients $T_{ \pm}^{(i, j)}(x, \xi)(1 \leq i, j \leq m)$ are defined by the relations:

$$
U_{i}(t, x, \xi)=\sum_{j=1}^{m} \exp \left(\sqrt{-1}(\ell+1)^{-1} t^{\ell+1} \lambda_{j}(0, x, \xi)\right) T_{\tilde{m}}^{(i, j)}(x, \xi) V_{j}^{ \pm}(t, x, \xi)
$$

in $\pm t>0$ for $1 \leq i \leq m$. In addition we define $\tilde{T}_{-}^{(i, j)}(x, \xi)$ as the (i, j) cofactor of matrix

$$
\left(T_{-}^{(i, j)}(x, \xi) ; \begin{array}{l}
i \downarrow 1, \cdots, m \\
j \rightarrow 1, \cdots, m
\end{array}\right) .
$$

Definitions (Symbol classes). Let $\mu, \kappa, \lambda \in \boldsymbol{R}$.
(1) $a(t, s, x, \xi) \in S^{ \pm}[\mu]$ if $a(t, s, x, \xi)$ is C^{∞} in $\left\{0 \leq \pm t \leq T_{0}\right\} \times\{0 \leq \pm s$ $\left.\leq T_{0}\right\} \times \boldsymbol{R}_{x}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right)$ with the following property: For any $p, q \in \boldsymbol{Z}_{+}$, $\alpha, \beta \in Z_{+}^{n}$, there exists $C>0$ such that

$$
\left|D_{\imath}^{p} D_{s}^{q} D_{x}^{\alpha} D_{\xi}^{\beta} \alpha(t, s, x, \xi)\right| \leq C(1+|\xi|)^{\mu-|\beta|} \quad(|\xi| \geq 1) .
$$

(2) $a(t, x, \xi) \in \tilde{S}^{ \pm}[\mu, \kappa]$ if $a(t, x, \xi)$ is C^{∞} in $\left\{0 \leq \pm t \leq T_{0}\right\} \times \boldsymbol{R}_{x}^{n} \times\left(\boldsymbol{R}^{n}\right.$ $-\{0\}$) with the following property: For any $p \in Z_{+}, \alpha, \beta \in Z_{+}^{n}$, there
exists $C>0$ such that
$\left|D_{t}^{p} D_{x}^{\alpha} D_{\xi}^{\beta} a(t, x, \xi)\right| \leq C(1+|\xi|)^{\mu-|\beta|}\left(|\xi|^{-1}+|t|^{\ell+1}\right)^{(k-p) /(\ell+1)} \quad(|\xi| \geq 1)$.
(3) $a(t, s, x, \xi) \in \tilde{S}^{ \pm}[\mu, \kappa, \lambda]$ if $a(t, s, x, \xi)$ is C^{∞} in $\left\{0 \leq \pm t \leq T_{0}\right\} \times\{0$ $\left.\leq \pm s \leq T_{0}\right\} \times \boldsymbol{R}_{x}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right)$ with the following property: For any p, q $\in \boldsymbol{Z}_{+}, \alpha, \beta \in \boldsymbol{Z}_{+}^{n}$, there exists $C>0$ such that

$$
\begin{aligned}
&\left|D_{t}^{p} D_{s}^{q} D_{x}^{\alpha} D_{\xi}^{\beta} a(t, s, x, \xi)\right| \leq C(1+|\xi|)^{\mu-|\beta|}\left(|\xi|^{-1}+|t|^{\ell+1}\right)^{(\kappa-p) /(\ell+1)} \\
& \cdot\left(|\xi|^{-1}+|s|^{\ell+1}\right)^{(\lambda-q) /(\ell+1)} \\
&(|\xi| \geq 1) .
\end{aligned}
$$

(4) $a(t, s, x, \xi) \in \bar{S}^{-}[\mu, \kappa]$ if $a(t, s, x, \xi)$ is C^{∞} in $\left\{(t, s) ;-T_{0} \leq s \leq t \leq 0\right\}$ $\times \boldsymbol{R}_{x}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right)$ with the property: For any $p, q \in \boldsymbol{Z}_{+}$, there exists C >0 such that

$$
\left|D_{t}^{p} D_{\delta}^{q} D_{x}^{\alpha} D_{\xi}^{\beta} a(t, s, x, \xi)\right| \leq C|t|^{\kappa}(1+|\xi|)^{\mu-|\beta|} \quad(|\xi| \geq 1)
$$

Here \boldsymbol{Z}_{+}denotes the set of non-negative integers and $\boldsymbol{Z}_{+}^{n}=\left\{\alpha=\left(\alpha_{1}, \cdots\right.\right.$, $\left.\alpha_{n}\right) ; \alpha_{i} \in Z_{+}(1 \leq i \leq n)$. Moreover, we define the symbol classes $S^{-}[-\infty]$, $\tilde{S}^{+}[\mu, \infty], \quad \tilde{S}^{-}[\mu, \kappa, \infty], \quad \tilde{S}^{-}[\mu, \infty] \quad$ by $\quad S^{-}[-\infty]=\bigcap_{\mu} S^{-}[\mu], \tilde{S}^{+}[\mu, \infty]$ $=\bigcap_{k>0} S^{+}[\mu, \kappa], \tilde{S}^{-}[\mu, \kappa, \infty]=\bigcap_{k>0} S^{-}[\mu, \kappa, \lambda], \tilde{S}^{-}[\mu, \infty]=\bigcap_{k>0} \tilde{S}^{-}[\mu, \kappa]$.

As a final step of our preparation to describe our theorem, let us clarify the definition of parametrix.

Definition. Corresponding to each $i(1 \leq i \leq m)$, we call $E_{i}^{ \pm}(t, s)$ a parametrix if $E_{i}^{ \pm}(t, s) g \in C^{\infty}\left(\Lambda_{ \pm} ; \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n}\right)\right)$ for each $g \in \mathcal{E}^{\prime}\left(\boldsymbol{R}^{n}\right)$ and satisfies

$$
P E_{i}^{ \pm} \equiv 0 \quad \text { in } \quad s<t,\left.\quad D_{t}^{n} E_{i}^{ \pm}\right|_{t=s} \equiv \delta_{h, i-1} I \quad(0 \leq h \leq m-1)
$$

where $\Delta_{ \pm}=\left\{(t, s) \in\left[-T_{0}, T_{0}\right] \times\left[-T_{0}, T_{0}\right] ; s \leq t, \pm s, \pm t>0\right\}$ and the symbol " \equiv " stands for an equality modulo integral operator with C^{∞} kernel. In the case, s, t vary over $\Delta=\left\{(t, s) ;-T_{0} \leq s \leq t \leq T_{0}\right\}$, we also define parametrices $E_{i}(t, s)(1 \leq i \leq m)$ in the same way as we did for $E_{i}^{ \pm}(t, s)(1 \leq i \leq m)$. The only modification is to replace $\Delta_{ \pm}$by Δ.

Theorem 1. There exist $T_{0}>0$ and symbols

$$
\begin{aligned}
& a_{i, j}^{+}(t, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{+}\left[(\ell+1)^{-1}\left(m_{j}^{+}-i+1+\varepsilon\right), m_{j}^{+}+\varepsilon\right], \\
& \tilde{a}_{i, j}^{+}(t, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{+}\left[(\ell+1)^{-1}\left(m_{j}^{+}-i+1+\varepsilon\right), \infty\right] \quad(1 \leq i, j \leq m), \\
& a_{i, j}^{-}(t, s, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{-}\left[2 \varepsilon(\ell+1)^{-1}-(i-1), m_{j}^{+}+\varepsilon, m_{j}^{-}-\ell(i-1)+\varepsilon\right], \\
& \tilde{a}_{i, j}^{-}(t, s, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{-}\left[2 \varepsilon(\ell+1)^{-1}-(i-1), m_{j}^{+}+\varepsilon, \infty\right], \\
& \tilde{\tilde{a}}_{-, j}(t, s, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{-}\left[2 \varepsilon(\ell+1)^{-1}-(i-1), \infty\right] \quad(1 \leq i, j \leq m)
\end{aligned}
$$

such that parametrices $E_{i}^{+}(t, 0)(1 \leq i \leq m)$ and $E_{i}^{-}(t, s)(1 \leq i \leq m)$ are given by

$$
\begin{aligned}
& \left(E_{i}^{+}(t, 0) \cdot\right)(x)=(2 \pi)^{-n} \sum_{j=1}^{m} O s-\iint_{1} \exp \left[\sqrt{-1}\left(\phi_{j}(t, 0, x, \xi)-y \cdot \xi\right)\right] \chi(\xi) \\
& \quad\left(a_{i, j}^{+}(t, x, \xi)+\tilde{a}_{i, j}^{+}(t, x, \xi)\right) \cdot d y d \xi \quad\left(0 \leq t \leq T_{0}, x \in \boldsymbol{R}^{n}\right)^{*)} \\
& \left(E_{i}^{-}(t, s) \cdot\right)(x)=(2 \pi)^{-n} \sum_{j=1}^{m} O s-\iint_{0} \exp \left[\sqrt{-1}\left(\phi_{j}(t, s, x, \xi)-y \cdot \xi\right)\right] \chi(\xi) \\
& \left(a_{i, j}^{-}(t, s, x, \xi)+\tilde{a}_{i, j}^{-}(t, s, x, \xi)+\tilde{a}_{i, j}^{-}(t, s, x, \xi)\right) \cdot d y d \xi \\
& \left(-T_{0} \leq s \leq t \leq 0, x \in \boldsymbol{R}^{n}\right)
\end{aligned}
$$

*) The sign "Os" before the integral sign denotes the usual oscillatory integral.
where $\chi(\xi) \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) ; \chi(\xi)=0(|\xi| \leq 1 / 2), \chi(\xi)=1(|\xi| \geq 1)$. In addition $\tilde{a}_{i, j}^{+}(1 \leq i, j \leq m)$ are flat at $t=0$ and $\tilde{a}_{i, j}^{-}(1 \leq i, j \leq m)$ are flat at $s=0$. Moreover,

$$
\begin{gathered}
a_{i, j}^{+}(t, x, \xi)-T_{+}^{(i, j)}(x, \xi) V_{j}^{+}(t, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{+}\left[(\ell+1)^{-1}\left(m_{j}^{+}-i+1+\varepsilon\right),\right. \\
\left.m_{j}^{+}+1+\varepsilon\right], \\
a_{i, j}^{-}(t, s, x, \xi)-a_{i, j, j}^{-, 0}(t, s, x, \xi) \in \bigcap_{\bullet>0} \tilde{S}^{-}\left[2 \varepsilon(\ell+1)^{-1}-(i-1), m_{j}^{+}+1+\varepsilon,\right. \\
\left.m_{j}^{-}-\ell(i-1)+\varepsilon\right]+\bigcap_{\bullet>0} \tilde{S}^{-}\left[2 \varepsilon(\ell+1)^{-1}-(i-1), m_{j}^{+}+\varepsilon,\right. \\
\left.m_{j}^{-}-\ell(i-1)+1+\varepsilon\right], \\
a_{i, j, j}^{-, 0}(t, s, x, \xi)=\operatorname{det}\left(T^{(i, j)}(x, \xi)\right)_{1 \leq i, j \leq m} V_{j}^{-}(t, x, \xi) V_{j}^{-}(s, x, \xi) .
\end{gathered}
$$

Theorem 2. Let $s<0$ be appropriately small. Then the following assertions hold.
(1)

$$
\begin{array}{r}
(E(t, s) \cdot)(x)=(2 \pi)^{-n} \sum_{\nu, \mu=1}^{n} O s-\iint \exp \left[\sqrt { - 1 } \left(\phi_{\nu, \mu}(t, s, x, \eta)\right.\right. \\
-y \cdot \eta)] a_{i, \nu, \mu}(t, s, x, \eta) \cdot d y d \eta
\end{array}
$$

for $t>0$. Here, if s, t are small enough, there exists $R>0$ such that the main part of

$$
\begin{aligned}
a_{i, \nu, \mu}(t, s, x, \eta)= & \sum_{j=1}^{m} T_{+}^{(j, \nu)}\left(x, \nabla_{x} \phi_{\nu, \mu}(t, s, x, \eta)\right) \tilde{T}_{j}^{(j, \mu)}\left(\nabla_{\eta} \phi_{\nu, \mu}(t, s, x, \eta), \eta\right) \\
& \cdot V^{+}\left(t, x, \nabla_{x} \phi_{\nu, \mu}(t, s, x, \eta)\right) \tilde{V}_{, i-1}\left(s, \nabla_{\eta} \phi_{\nu, \mu}(t, s, x, \eta), \eta\right) \\
& \cdot(\text { nonzero factor }) \quad \text { for }|\eta| \geq R .
\end{aligned}
$$

(2) Let $i(0 \leq i \leq m-1)$ be an integer and $u_{h} \in \mathcal{E}^{\prime}\left(\boldsymbol{R}^{n}\right)(0 \leq h \leq m-1)$ whose wavefront sets $W F\left(u_{h}\right)(0 \leq h \leq m-1)$ satisfy $\cup_{h \neq i} W F\left(u_{h}\right)=\phi$, $W F\left(u_{i}\right)=\left\{\left(y^{0}, \rho \eta^{0}\right) ; \rho>0\right\}$. Let $u(t, s, x)$ be the solution of the Cauchy problem: $P u=0,\left.D_{t}^{h} u\right|_{t=0}=u_{h}(0 \leq h \leq m-1)$. Suppose the following condition (\#) holds for a particular pair $\left(\nu_{0}, \mu_{0}\right)$ and a sufficiently small $s^{\prime}, t^{\prime}\left(s \leq s^{\prime}<0<t^{\prime}\right)$
(\#) $\quad \sum_{j=1}^{m} T_{+}^{\left(j, \nu_{0}\right)}\left(T_{\nu_{0}, \mu_{0}}\left(t^{\prime}, s^{\prime}\right) \circ T_{\mu_{0}}\left(s^{\prime}, s\right)\left(y^{0}, \eta^{0}\right)\right) \tilde{T}_{-}^{\left(j, \mu_{0}\right)}\left(T_{\mu_{0}}\left(s^{\prime}, s\right)\left(y^{0}, \eta^{0}\right)\right) \neq 0$.
Then, for any $t\left(0 \leq t \leq T_{0}\right)$, the wavefront set $W F(u(t, s))$ of $u(t, s)$ contains $T_{\nu_{0}, \mu_{0}}(t, s)\left(y^{0}, \eta^{0}\right)$.

Remark. (1) Since $T_{\mu_{0}}(0,0)(y, \eta)=T_{\nu 0, \mu_{0}}(0,0)(y, \eta)$, the following condition (\#)' implies (\#).
(\#) $\quad \sum_{j=1}^{m} T^{\left(j, \nu_{0}\right)}\left(y^{0}, \eta^{0}\right) \tilde{T}^{\left(j, \mu_{0}\right)}\left(y^{0}, \eta^{0}\right) \neq 0$.
The left hand side of (\#) ${ }^{\prime}$ is the so-called Stokes' multiplier.
(2) Our proofs of Theorems 1 and 2 provide many other conditions instead of (\#). (Consult [3].)

References

[1] K. Amano: Branching of singularities for degenerate hyperbolic operators and Stokes phenomena. Proc. Japan Acad., 56A, 206-209 (1980).
[2] K. Amano and G. Nakamura: ditto. II. ibid., 57A, 164-167 (1981).
[3] -: Branching of singularities for degenerate hyperbolic operators (submitted to Publ. RIMS Kyoto Univ.).
[4] K. Shinkai: Branching of singularities for degenerate hyperbolic system. Comm. P.D.E., 7, 581-607 (1982).

[^0]: *) Department of Mathematics, Josai University.
 **) Department of Mathematics, M.I.T. and Department of Mathematics, Josai University.

