117. Product Formula for Nonlinear Semigroups in Hilbert Spaces

By Yoshikazu Kobayashi
Faculty of Engineering, Niigata University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1982)

1. Introduction. Let H be a real Hilbert space. Let A and B be maximal monotone (multi-valued) operators in H such that $A+B$ is also maximal monotone in H. (We refer to the work of Brezis [2] for basic results concerning maximal monotone operators.) Let $\left\{S_{A}(t) ; t \geqq 0\right\},\left\{S_{B}(t) ; t \geqq 0\right\}$ and $\left\{S_{A+B}(t) ; t \geqq 0\right\}$ be the contractive semigroups in H generated by $-A,-B$ and $-(A+B)$, respectively. The purpose of this paper is to show the following result.

Theorem. If there exists a closed convex set $C \subset \overline{D(A) \cap D(B)}$ such that $(I+\lambda A)^{-1}(C) \subset C$ and $(I+\lambda B)^{-1}(C) \subset C$ for $\lambda>0$, then
$S_{A+B}(t) x=\lim _{n \rightarrow \infty}\left(S_{A}(t / n) S_{B}(t / n)\right)^{n} x$
for each $x \in C \cap \overline{D(A) \cap D(B)}$ and each $t \geqq 0$ and the convergence is uniform on each finite interval of $[0, \infty)$.

This theorem was proved by Brezis and Pazy in [3] with the extra assumption that A and B are single-valued. Similar results are obtained for some Banach spaces as well and will be treated in the forthcoming paper [5] of the author.
2. Proof of the theorem. (Step 1.) By Proposition 4.5 in [2], $S_{A}(t)$ and $S_{B}(t)$ are contractions on C into itself. So we shall prove the convergence

$$
\lim _{t \rightarrow 0+}\left(I+\lambda t^{-1}\left(I-S_{A}(t) S_{B}(t)\right)\right)^{-1} x=(I+\lambda(A+B))^{-1} x
$$

for each $x \in C \cap \overline{D(A) \cap D(B)}$ and each $\lambda>0$, from which our assertion is derived through Theorem 4.3 of [2]. To this end, let $\lambda>0$, fix any $x \in C \cap \overline{D(A) \cap D(B)}$ and set $u(t)$ any y_{0} to be $\left(I+\lambda t^{-1}\left(I-S_{A}(t) S_{B}(t)\right)^{-1} x\right.$ and $(I+\lambda(A+B))^{-1} x$, respectively. It can easily be seen that

$$
\begin{equation*}
\lambda^{-1}(u(t)-x)=t^{-1}\left(S_{A}(t) S_{B}(t) u(t)-u(t)\right), \tag{2.1}
\end{equation*}
$$

$u(t)$ are contained in C for all $t>0$ and $u(t)$ is bounded as $t \rightarrow 0+$. Since $S_{A}(t)$ and $S_{B}(t)$ are contractions from C into itself, the indefinite integrals

$$
v(t)=t^{-1} \int_{0}^{t} S_{B}(s) u(t) d s \quad \text { and } \quad w(t)=t^{-1} \int_{0}^{t} S_{A}(s) S_{B}(t) u(t) d s
$$

are contained in C for all $t>0$ and bounded as $t \rightarrow 0+$. Therefore, one can choose a null sequence $\left\{t_{n}\right\}$ of positive numbers such that

$$
\begin{equation*}
u\left(t_{n}\right) \rightharpoonup u_{0}, v\left(t_{n}\right) \rightharpoonup v_{0} \quad \text { and } \quad w\left(t_{n}\right) \rightharpoonup w_{0} \tag{2.2}
\end{equation*}
$$

as $n \rightarrow \infty$, where the symbol \rightarrow means the weak convergence and u_{0}, v_{0}
and w_{0} are elements of C.
(Step 2.) We first show that
(2.3)

$$
u_{0}=v_{0}=w_{0} .
$$

For this purpose, we define a functional $f: H \rightarrow[0, \infty)$ by

$$
f(y)=\lim \sup _{n \rightarrow \infty}\left\|y-u\left(t_{n}\right)\right\|^{2} \quad \text { for } y \in H
$$

which was suggested by the work of Baillon [1]. (See also the work of Opial [6] for basic use of such a functional.) Let $y \in C$. Then, by Minkowski's inequality, we have

$$
\begin{aligned}
&\left(t^{-1} \int_{0}^{t}\left\|S_{B}(t-s) u(t)-y\right\|^{2} d s\right)^{1 / 2} \\
& \leqq\left(t^{-1} \int_{0}^{t}\left\|S_{B}(t-s) u(t)-S_{B}(t-s) y\right\|^{2} d s\right)^{1 / 2} \\
&+\left(t^{-1} \int_{0}^{t}\left\|S_{B}(t-s) y-y\right\|^{2} d s\right)^{1 / 2} \\
& \leqq\|u(t)-y\|+\left(t^{-1} \int_{0}^{t}\left\|S_{B}(t-s) y-y\right\|^{2} d s\right)^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|S_{B}(t) u(t)-y\right\| \leqq & \left(t^{-1} \int_{0}^{t}\left\|S_{B}(t) u(t)-S_{B}(s) y\right\|^{2} d s\right)^{1 / 2} \\
& +\left(t^{-1} \int_{0}^{t}\left\|S_{B}(s) y-y\right\|^{2} d s\right)^{1 / 2} \\
\leqq & \left(t^{-1} \int_{0}^{t}\left\|S_{B}(t-s) u(t)-y\right\|^{2} d s\right)^{1 / 2} \\
& +\left(t^{-1} \int_{0}^{t}\left\|S_{B}(s) y-y\right\|^{2} d s\right)^{1 / 2}
\end{aligned}
$$

Let $t=t_{n}$ and let n tend to the infinity. Then, we have
$\lim \sup _{n \rightarrow \infty}\left\|S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2}$

$$
\begin{aligned}
& \leqq \lim \sup _{n \rightarrow \infty} t_{n}^{-1} \int_{0}^{t_{n}}\left\|S_{B}\left(t_{n}-s\right) u\left(t_{n}\right)-y\right\|^{2} d s \\
& \leqq f(y)
\end{aligned}
$$

for $y \in C$. Similarly, we have

$$
\begin{aligned}
& \left(t^{-1} \int_{0}^{t}\left\|S_{A}(t-s) S_{B}(t) u(t)-y\right\|^{2} d s\right)^{1 / 2} \\
& \quad \leqq\left\|S_{B}(t) u(t)-y\right\|+\left(t^{-1} \int_{0}^{t}\left\|S_{A}(t-s) y-y\right\|^{2} d s\right)^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|S_{A}(t) S_{B}(t) u(t)-y\right\| \leqq & \left(t^{-1} \int_{0}^{t}\left\|S_{A}(t-s) S_{B}(t) u(t)-y\right\|^{2} d s\right)^{1 / 2} \\
& +\left(t^{-1} \int_{0}^{t}\left\|S_{A}(s) y-y\right\|^{2} d s\right)^{1 / 2}
\end{aligned}
$$

for $y \in C$, which implies

$$
\begin{aligned}
& \lim \sup _{n \rightarrow \infty}\left\|S_{A}\left(t_{n}\right) S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2} \\
& \quad \leqq \lim \sup _{n \rightarrow \infty} t_{n}^{-1} \int_{0}^{t_{n}}\left\|S_{A}\left(t_{n}-s\right) S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2} d s \\
& \quad \leqq \lim \sup _{n \rightarrow \infty}\left\|S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2}
\end{aligned}
$$

for $y \in C$. But, since $u(t)$ is bounded as $t \rightarrow 0+$, (2.1) implies

$$
f(y)=\lim \sup _{n \rightarrow \infty}\left\|S_{A}\left(t_{n}\right) S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2}
$$

for $y \in H$. It turns out that

$$
\begin{align*}
f(y) & =\lim \sup _{n \rightarrow \infty} t_{n}^{-1} \int_{0}^{t_{n}}\left\|S_{B}\left(t_{n}-s\right) u\left(t_{n}\right)-y\right\|^{2} d s \tag{2.4}\\
& =\lim \sup _{n \rightarrow \infty} t_{n}^{-1} \int_{0}^{t_{n}}\left\|S_{A}\left(t_{n}-s\right) S_{B}\left(t_{n}\right) u\left(t_{n}\right)-y\right\|^{2} d s
\end{align*}
$$

for all $y \in C$. We now put $C_{0}=\left\{y \in C ; f(y)=\inf _{y \in c} f(y)\right\}$. Since

$$
\|u(t)-y\|^{2}=\left\|u(t)-u_{0}\right\|^{2}+\left\|u_{0}-y\right\|^{2}+2\left\langle u(t)-u_{0}, u_{0}-y\right\rangle
$$

for $y \in C$, it follows that

$$
f(y) \geqq f\left(u_{0}\right)+\left\|u_{0}-y\right\|^{2} \quad \text { for } y \in C .
$$

Since $u_{0} \in C$, it yields $C_{0}=\left\{u_{0}\right\}$. Similarly, for each $y \in C$,

$$
\begin{aligned}
t^{-1} \int_{0}^{t}\left\|S_{B}(s) u(t)-y\right\|^{2} d s= & t^{-1} \int_{0}^{t}\left\|S_{B}(s) u(t)-v_{0}\right\|^{2} d s \\
& +\left\|v_{0}-y\right\|^{2}+2\left\langle v(t)-v_{0}, v_{0}-y\right\rangle
\end{aligned}
$$

which implies, by (2.4).

$$
f(y) \geqq f\left(v_{0}\right)+\left\|v_{0}-y\right\|^{2} \quad \text { for } y \in C .
$$

Thus we have $C_{0}=\left\{v_{0}\right\}$. Similar argument through (2.4) implies C_{0} $=\left\{w_{0}\right\}$ and hence we obtain (2.3).
(Step 3.) Now let $z_{A} \in A y_{0}$ and $z_{B} \in B y_{0}$ be such that $y_{0}+\lambda\left(z_{A}+z_{B}\right)$ $=x$. By Proposition 3.6 in [2], it follows that

$$
\begin{aligned}
& \left\|S_{A}(t) S_{B}(t) u(t)-y_{0}\right\|^{2} \\
& \quad \leqq\left\|S_{B}(t) u(t)-y_{0}\right\|^{2}+2 \int_{0}^{t}\left\langle-z_{A}, S_{A}(s) S_{B}(t) u(t)-y_{0}\right\rangle d s \\
& \quad=\left\|S_{B}(t) u(t)-y_{0}\right\|^{2}+2 t\left\langle-z_{A}, w(t)-y_{0}\right\rangle .
\end{aligned}
$$

Similarly,

$$
\left\|S_{B}(t) u(t)-y_{0}\right\|^{2} \leqq\left\|u(t)-y_{0}\right\|^{2}+2 t\left\langle-z_{B}, v(t)-y_{0}\right\rangle .
$$

On the other hand, (2.1) implies that

$$
\begin{aligned}
\left\|S_{A}(t) S_{B}(t) u(t)-y_{0}\right\|^{2} & \geqq\left\|u(t)-y_{0}\right\|^{2}+2\left\langle S_{A}(t) S_{B}(t) u(t)-u(t), u(t)-y_{0}\right\rangle \\
& =\left\|u(t)-y_{0}\right\|^{2}+2 t \lambda^{-1}\left\langle u(t)-x, u(t)-y_{0}\right\rangle .
\end{aligned}
$$

Combining these inequalities, we can show that

$$
\begin{aligned}
\left\|u(t)-y_{0}\right\|^{2} \leqq & \left\langle x-y_{0}, u(t)-y_{0}\right\rangle+\left\langle-\lambda z_{A}, w(t)-y_{0}\right\rangle \\
& +\left\langle-\lambda z_{B}, v(t)-y_{0}\right\rangle .
\end{aligned}
$$

Let $t=t_{n}$ be as in (2.2) and let n tend to the infinity. Since $u\left(t_{n}\right), v\left(t_{n}\right)$ and $w\left(t_{n}\right)$ converge weakly to the same u_{0}, it follows that

$$
\lim \sup _{n \rightarrow \infty}\left\|u\left(t_{n}\right)-y_{0}\right\|^{2} \leqq\left\langle x-y_{0}-\lambda z_{A}-\lambda z_{B}, u_{0}-y_{0}\right\rangle .
$$

Thus, $u\left(t_{n}\right)$ converges strongly to y_{0}.
Q.E.D.

References

[1] J. B. Baillon: Générateurs et semi-groupes dans les espaces de Banach uniformément lisses. J. Funct. Anal., 29, 199-213 (1978).
[2] H. Brezis: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. Math. Studies, 6, North-Holland (1973).
[3] H. Brezis and A. Pazy: Semigroups of nonlinear contractions on convex sets. J. Funct. Anal., 6, 237-281 (1970).
[4] T. Kato and K. Masuda: Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals. J. Math. Soc. Japan, 30, 169-178 (1978).
[5] Y. Kobayashi: Product formula for nonlinear contractive semi-groups in Banach spaces (to appear).
[6] Z. Opial: Lecture Notes on Nonexpansive and Monotone Mappings in Banach Spaces. Lecture Notes 67-1, Lefschtz Center for Dynamical Systems, Brown University (1967).

