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1o Diophantine ecluations of the following type have been dis-
cussed by many authors.

Let K be an algebraic number field of some type (e.g. totally real,
abelian over Q, or "almost real" cf. [3]), a, fl given roots of unity, and
m a given natural number. Find the solutions of the ecluation"
( 1 ) -ka=V, e K(/fl-), ] e U(),
where U will mean the group of units of the algebraic number field
F. (C. [1]-[5]. E.g. it is shown in [3] that when K is almost real,
--fl-- --1, m>__3, e U, then the only possible solutions are given by
--a root of unity. This covers the results of [2], [5].)

We shall denote in the following the ring of integers of the field
F by (C). p will mean an odd prime, and or any natural number n,
will mean a primitive n th root o unity.

Remark. From (1) ollows immediately e
In this note, we prove the ollowing three theorems"
Theorem A. Suppose K to be totally real and m-1 in (1).
( I ) If c--/-- 4, then -O.
(II) If a---fl--p, then -(5-1-5p)/(1-) with c e {1, 2, ...,

p-i}.
(III) If c=fl=, K is moreover non-abelian and of prime degree

over Q, then $=0 or 1.
Remark. To Theorem A may be associated a problem posed by

Julia Robinson, cited in [4], asking 2or possibilities o expressing I as
the difference of two units in an algebraic number field.

Theorem B. Suppose K to be totally real, m>=2, a=fl=l, V4=1.
Then the only possible solutions of (1) are given by --a root of unity.

Theorem C. Suppose K/Q to be abelian, m=2, a---1 and
where tc is an odd natural number >=3. Then the only solution of (1)
is =0, V=I.

2. Proof of Theorem A. Our eiuation is in this case +a=V,
a=fl= or , e K(a+a-9, V e U(.). Notice first should be e
as a, V e

( I ) Suppose 4= 0. As K (+;):K is totally real, all conju-
gates ’ of $ are real, and [’_+]1, so that+ can not be e
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(II) As K([ + [[) is totally real, $ e K([ + [[) and V=$+[
e U(:), also the complex conjugate =-F e U(:), and - e
e G(:). We have ]=]], and it is easily seen that all conjugates- have the absolute value 1. Thus - is a root of unity in virtue
of Kronecker’s theorem. Put =, with (n, c) 1. Clearly 5# 1,
and we have also #-1, because this would imply -=(+)/2
which is not an integer. So we have n3. Put n=nop, (no, p)=l,,0, and examine different cases.

(a) n0=l, ,2. Raising the both sides of the equation
(+)/(+i1)

to the p th power and then substracting 1, we see easily _,-1
and so 5_,-lepG(:) as (c, p)=l, which implies Q(_,)K().
Using the act (p)=(5_,-1)(-) as ideal in Q(_), we obtain

(a,_,-1) Oe{:.-,)= ((._,-1)0(:)) R Q(a. ,)a (PO(:)) Q(a.-,)

This shows the impossibility of this case, as 9(p-1)2 or p2.
(b) no2,,l. Then weshouldhave(5,-5;)/(+)=.-l,

(c, nopg=l. This is not possible, since 0--1, +; are units and- is not unit.
(c) no3, ,=0. Then we get (,-1)G(:)=(5o-1)G(:) as in (b).

This is not possible if n0=2* or no=q (ZI), where q is an odd prime
different rom p. If n0 as distinct prime factors, then 50-1 is a
unit, so that (--1) (:)=(no--1) ()=(:), which is also a con-
tradiction.

Thus only the case n0=l, ,=1 remains. Namely (+)/(l+)
=i, c e {1, 2, ...,p-I}, which yields l=(--)/(1--i) and

K(+;1).
(III) In this case, we have KQ()=Q or ay odd prime p.

If c3 in =(5---5)/(1--), must be a unit in KQ(5,)=Q.
Hence =1. However #-1, because ---l+p--l0. There-
ore we obtain 1=1. I c=2, then we hve :0. I c=1, then we
get 1.

Thus the proof o Theorem A is concluded.
3. Proof of Theorem . Without loss of generality, we may

assume that m is prime.
(i) Let m=p an odd prime. As ;=(+l)(l+)...(l+-)

e U(:), e (:) ad e K(+), we have e (:+:;,)
e U(:). Ten we ave :(--)/(1-) with e {1, 2, ...,
in virtue of (II) in Theorem A. If c=1, then =1, in contradiction

with;=l+l e U(:). I c=2, then=0. This also contradicts #1.
If c 3, then $ is a unit in totally real algebraic number field K(+),
so we have immediately Theorem B from the cited Grossman’s result
[3].
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(ii) Consider now the case m=2. As =(+,)(-t-;) e U,,
e 0(,) and e K=K(+;), we have e O and + e U(,), so

that =0 in virtue of (I) in Theorem A. This is a contradiction and
the proof is completed.

4. Proof of Theorem C. As =(+)(+)e U(,,
and its complex conjugate =+; are in U(:,), so that 36- e
G(:,). Moreover, since K(,) is contained in some cyclotomic field,=- is a root of unity by a well known theorem. Then (r-1)
=--(r+l). It is clear that r#l. Hence =-(+1)/(-1). From
+54=--24/(---1) e Ux(:,), we have

+/- I=N(,)(+)=N(:,)(--
This yields .---1, since . is a root of unity.
]-1. The proof is completed.

,-1
Thus we obtain =0,
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