105. On Surfaces of Class VII₀ with Curves

By Iku NAKAMURA

Department of Mathematics, Hokkaido University

(Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1982)

Introduction. A minimal compact complex surface is called a surface of class VII_0 or in short a VII_0 surface if b_1 (the first Betti number) is equal to 1. The purpose of this note is to announce recent results on the classification of VII_0 surfaces with curves, based on Enoki's and my articles [1], [7]. Most of the results will be summarized in a table (4.9).

Notations. We denote by S a compact complex surface, by \mathcal{O}_S the sheaf of holomorphic functions on S, by b_i the i-th Betti number of S. For two effective divisors C and C' we denote by CC' the intersection number of C and C', by C^2 the selfintersection number of C, by \mathcal{O}_C the structure sheaf of C, that is $\mathcal{O}_S/\mathcal{O}_S(-C)$, by $h^1(C,\mathcal{O}_C)$ dim $_CH^1(C,\mathcal{O}_C)$, by $b_2(C)$ the number of irreducible components of C. We also denote by K_S the canonical bundle of S.

- § 1. Elliptic VII₀ surfaces. In view of the theorem of Chow and Kodaira a compact complex surface with two algebraically independent meromorphic functions is a projective surface, hence b_1 is even. Therefore no surface of class VII₀ has two algebraically independent meromorphic functions. First we recall
- (1.1) Theorem [6]. If a VII_0 surface S has a nonconstant meromorphic function, then S is an elliptic surface and isomorphic to one of the following surfaces:

 $L_{a_r}(m_r,eta_r)L_{a_{r-1}}(m_{r-1},eta_{r-1})\cdots L_{a_1}(m_1,eta_1)(P^1 imes C) \ where\ P^1\ is\ a\ rational\ curve,\ C\ is\ an\ elliptic\ curve,\ a_k\in P^1,\ a_j\neq a_k\ (j\neq k), \ m_k\ is\ a\ positive\ integer,\ eta_k\ is\ a\ point\ of\ C\ of\ order\ m_k\ and\ eta_1+eta_2+\cdots +eta_k
eq 0.$

- (1.2) In view of (1.1) the problem of classifying VII_0 surfaces is reduced to that of classifying VII_0 surfaces with no meromorphic functions except constants. We shall discuss exclusively VII_0 surfaces with curves in this note. We notice that there are VII_0 surfaces with no curves and it remains unsettled to classify all such surfaces. See [2].
 - § 2. Curves on VII₀ surfaces.
- (2.1) Lemma [7]. Let S be a VII₀ surface with no meromorphic functions except constants, D an effective divisor on S. Then

 1) $h^1(D, \mathcal{O}_D) \leq 2$,

- 2) if D is reduced and connected, then $h^1(D, \mathcal{O}_D) \leq 1$,
- 3) if D is irreducible, then D is either a nonsingular rational curve, or a rational curve with a node, or a nonsingular elliptic curve,
- 4) if D is reduced and connected, and if $h^1(D, \mathcal{O}_D) = 1$, $h^1(E, \mathcal{O}_E) = 0$ for any proper subcurve E of D, then D is either a nonsingular elliptic curve, or a cycle of rational curves.
- (2.2) In (2.1) I mean by a cycle of rational curves a reduced curve $C = \sum_{\nu=1}^{n} C_{\nu}$ such that $n \geq 3$, C_{ν} is a nonsingular rational curve, $C_{\nu}C_{\nu+1} = 1$, $C_{\nu}C_{\mu} = 0$ ($\nu \neq \mu$, $\mu \pm 1 \mod n$) or that n = 2, C_{ν} is a nonsingular rational curve, C_{1} and C_{2} meet transversally at two points, or that n = 1, C_{1} is a rational curve with a node.
- (2.3) Lemma [7]. Let S be a VII_0 surface with no meromorphic functions except constants, D a reduced divisor on S. Suppose that $h^1(D, \mathcal{O}_D) = 2$, $h^1(E, \mathcal{O}_E) \leq 1$ for any proper subcurve E of D. Then $K_S + D = 0$, and
- 1) $D=E_1+E_2$, E_y a nonsingular elliptic curve with $E_y^2=0$, or
- 2) D=E+Z, E a nonsingular elliptic curve, Z a cycle of rational curves with $E^2<0$, $Z^2=0$, or
- 3) D=A+B, A and B cycles of rational curves with $A^2<0$, $B^2<0$.
- (2.4) We notice that a VII_0 surface with a cycle of rational curves has no meromorphic functions except constants by (1.1).
 - § 3. Inoue surfaces and exceptional compactifications.
- (3.1) Let M be a complete module in a real quadratic field K, $U(M) = \{\alpha \in K ; \alpha M = M\}, U^+(M) = \{\alpha \in K ; \alpha M = M, \alpha > 0, \alpha' > 0\}, V$ a subgroup of $U^+(M)$ of finite index. Then M and V act on the product $H \times C$ of the upper half plane and the complex plane by
 - $\alpha:(z_1,z_2)\longrightarrow(\alpha z_1,\alpha'z_2), \qquad m:(z_1,z_2)\longrightarrow(z_1+m,z_2+m').$
- Let G(M, V) be the group generated by the above actions of M and V. Then G(M, V) acts upon $H \times C$ freely and properly discontinuously so that we have a complex surface S'(M, V) with no singularities as quotient. This S'(M, V) is compactified into a VII_0 surface S(M, V) by adding two suitable cycles A and B of rational curves [4]. We call S(M, V) a hyperbolic Inoue surface.
- (3.2) In general $[U(M): U^+(M)] = 1$ or 2. When $[U(M): U^+(M)] = 2$, we choose a subgroup V of U(M) of odd index. Let $V^2 = \{\alpha^2 : \alpha \in V\}$. Then V^2 is a subgroup of $U^+(M)$, and the group V/V^2 of order two acts on $S(M, V^2)$ freely so that we have a VII_0 surface $S(M/V^2)/(V/V^2)$ as quotient which we denote by $\hat{S}(M, V)$ and call a half Inoue surface.
- (3.3) There is another series of Inoue surfaces which were given in [3]. This series of surfaces are denoted by S(t, n) where $t \in C$, 0 < |t| < 1, n is a positive integer and we call them parabolic Inoue surfaces. Any parabolic Inoue surface S(t, n) has an elliptic curve E and

a cycle Z of n rational curves with $E^{z}=-n$, $Z^{z}=0$. It is a compactification of a line bundle of degree -n over the elliptic curve E by the cycle Z.

- (3.4) Let A be an affine line bundle over an elliptic curve E. Let L be the linear part of A. Then L is a line bundle over E. Suppose $\deg L = -n < 0$. Then A has an elliptic ruled surface as a natural compactification by the elliptic curve E. A has another "exceptional" compactification S(A) by a cycle C of n rational curves with $C^2 = 0$ which is a VII $_0$ surface. We call this S(A) an exceptional compactification of A of degree n. S(A) is a parabolic Inoue surface if and only if S(A) has an elliptic curve. See [1].
 - § 4. Characterizations and a table.
- (4.1) Theorem (Kato, see [7]). Let S be a VII_0 surface with no meromorphic functions except constants. Suppose S has two elliptic curves. Then S is a primary Hopf surface.
- (4.2) Theorem [7]. Let S be a VII_0 surface with no meromorphic functions except constants. Suppose S has an elliptic curve but no cycle of rational curves. Then S is a primary Hopf surface.
 - See [6] for the definition of primary Hopf surfaces.
- (4.3) Theorem [1]. Let S be a VII_0 surface. Suppose S has a cycle C of rational curves with $C^2=0$. Then S is an exceptional compactification S(A) of an affine line bundle A over an elliptic curve.
- (4.4) Theorem [1], [7]. Let S be a VII_0 surface. Suppose S has an elliptic curve and a cycle of rational curves. Then S is a parabolic Inoue surface.

This theorem was first proved by Enoki as a special case of (4.3) by applying (2.3). A more direct proof was given in [7].

- (4.5) Theorem [7]. Let S be a VII_0 surface. Suppose S has two cycles of rational curves. Then S is a hyperbolic Inoue surface.
- (4.6) Theorem [7]. Let S be a VII₀ surface with C a cycle of rational curves with $C^2 < 0$. Suppose that S satisfies one of the following equivalent conditions.
- 1) There exists a flat line bundle F such that $K_s+C=F$.
- 2) $b_2 = \sharp$ (irreducible components of C).
- 3) $C^2 = -b_2$.
- 4) The natural homomorphism i_* of $H_1(C, \mathbb{Z})$ to $H_1(S, \mathbb{Z})$ is not surjective.
- 5) $[H_1(S, Z): i_*H_1(C, Z)] = 2.$ Then S is a half Inoue surface.
- (4.7) Theorem [7]. Let S be a VII_0 surface. Suppose S has an elliptic curve. Then S is one of the following surfaces;

elliptic VII₀ surfaces (1.1) ($b_2=0$),

primary Hopf surfaces $(b_2=0)$, parabolic Inoue surfaces $(b_2>0)$.

(4.8) Theorem [7]. Let S be a VII₀ surface with $b_2=1$ having at least a curve. Then S is either an exceptional compactification of degree one or a half Inoue surface $\hat{S}(M, U(M)), M=Z+Z(3+\sqrt{5})/2$.

Now we have the following classification table of VII₀ surfaces.

(4.9) Table. [1]+[6]+[7]

curves	surfaces
1) (more than) 3 elliptic curves	elliptic VII ₀ surfaces
2) 2 elliptic curves	primary Hopf surfaces
3) an elliptic curve and no cycle	primary Hopf surfaces
4) an elliptic curve and a cycle	parabolic Inoue surfaces
5) two cycles	hyperbolic Inoue surfaces
6) a cycle C with $C^2=0$	exceptional compactifications with no elliptic curves
7) a cycle C with $C^2 < 0$	
7-1) $b_2(S) = b_2(C)$	half Inoue surfaces
7-2) $b_2(S) > b_2(C)$? ? ?

(4.10) We notice that there are a lot of VII₀ surfaces with cycles C with $C^2 < 0$ and $b_2(S) > b_2(C)$. See [5], [8]. We also notice that the converse of (4.3)–(4.8) are true.

References

- [1] I. Enoki: Surfaces of class VIIo with curves. Tôhoku Math. J., 33, 453-492 (1981).
- [2] M. Inoue: On surfaces of class VII₀. Invent. math., 24, 269-310 (1974).
- [3] —: New surfaces with no meromorphic function. Proc. Int. Cong. of Math., Vancouver, vol. 1, pp. 423-426 (1974).
- [4] —: ditto. II. Complex Analysis and Algebraic Geometry. Iwanami Shoten Publ. and Cambridge Univ. Press, pp. 91-106 (1977).
- [5] Ma. Kato: Compact complex manifolds containing global spherical shells I. Proc. Int. Symp. Algebraic Geometry, Kyoto, pp. 45-84 (1977).
- [6] K. Kodaira: On the structure of compact complex analytic surfaces, II. Amer. J. Math., 88, 682-721 (1966).
- [7] I. Nakamura: On surfaces of class VII₀ with curves (preprint).
- [8] —: Rational degeneration of VIIo surfaces (preprint).