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104. Certain Irreducible Polynomials with Multiplicatively
Independent Roots

By Kyoji SANTO
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M.J.A., Nov. 12, 1982)

1. Statement of the results. For an integer/_>3, let us define
a polynomial P, of degree p4"

P,(x)=x+k(x-+x-+. +x)+l.
In this note, we prove the ollowing theorem.
Theorem. 1. For even p, P,(x) is irreducible over Z. For odd

p, (x+ 1)-P,(x) is irreducible over Z.
2. The polynomial has the following decompositions.

19/2--1

P,p(x)--(x+c)(x+c-1) [I (x-e)(x-) for even p
i=l

(p-I)/2-1

(x,+ 1)(x+a)(x +c-) I-[ (x-- s)(x--) for odd p

where c is a real number such that 0la-k+l[(k--1)-(-) and
=1, i=1, ..., [p/2]-1. Here means the complex conjugate of e and

l l=
3. The roots c, , ..., /_ in the above expression are multipli-

catively independent in C ={a e C" c:/:0}.
The theorem is proven in [1] 3 (3.8) 2) or the case k=3. Then

Prof. G. Fujiski sked the author whether it is true or k_3. In
fact it is true as we see in this note. The uthor would like to express
his gratitude to Prof. G. Fujisaki.

2. A sketch of the proof of the theorem. For a fixed k, the
sequence P=P,, p>_4 of the polynomials satisfies the following
recursion ormula.
(2.1) Pp+(x)--(x+l)P(x)-xP_(x) or p_4.

Define new polynomials in z x+ x- by,
(2.2) Qq(z) "=x-qP.(x) q--2, , 4,

R(z) "=(x+l)-lx-P2q+(x) q--2, 3, 4, ....
Then the recursion ormula (2.1) turns out to be,

(2.3) Qq+(z)--zQ(z)-Q_l(z) q=2,
R+(z)=zR(z)-Rq_(z) q=2,

Now let us show the following assertion.

Assertion. The equation Q(z)=0 (resp. Rq(z)=0) has q real simple
roots, q-1 of them lie in the interval (-2, 2) and the remaining one
lies in the interval (- oo, 2).
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Furthermore in each connected component of R-(roots o2 Qq(z)=O}
(resp. R-[roots of Rq(z)=O}), there exists exactly one root of Qq/(z)=O
(resp. Rq/(z)=O).

Proof of the assertion. We prove the assertion only or the se-
quence Qq(z), since the other case is shown completely parallel to that
case.

We prove the assertion by induction on q, where the statements
is trivially true or q 2, Q. z + kz+k- 2.

Let , ..., flq be roots o Qq(z)=O such that 2fl. q_-2
:>flq. It is enough to show that there exists at least one root o Qq /(z)
=0 on each interval (fl, 2), (, ), ..., (flq_, flq-0, (-2, flq_) and (-c,
/q). By induction hypothesis, (- 1)-Qq_(fl)0 for i=1, .., q. Then
using the recursion (2.3),
(2.4) (-1)Qq/(fl)O or i=1, ..., q.
On the other hand, one computes easily
(2.5) Qq/(2) =2+(2q+1)k0
(2.6) Qq
(2.7) lira Qq/(z)=(-1)qc.

Now looking carefully the change o the sign of the values of the
function Qq/(z), z e R in (2.4)-(2.7), one proves the assertion.

Proof of 2. A root fl of Qq(z) in the interval (-2, 2) corresponds
to two roots x-flx+l=0 of P.(x)=0 with absolute value equal to 1
and a root fl of Qq(z) in the interval (-c,-2) corresponds to two
minus real roots of P(x)=0. Hence 2 of the theorem is shown.

Proof of 1. First let us show that if P,(x) is reducible to
Q(x)Q(x), then either one o Q(x) is a cyclotomic polynomial. First
Q(O)Q(O)=P.,(O)=I. Hence Q(0)=+_I. i.e. I-[.;ooto,[al=l. Hence
in the decomposition of 2, i -a is a root of Q(x)=(, -a- should be
a root of Q(x) also. Then the root of Q.(x)=0 consists only of num-
bers with ]e]=l, which means that Q.(x) is a cyclotomic polynomial
due to a theorem of Kronecker.

Suppose P,(x) is reducible and has a root exp (2/-1fro) for a
integer m2. Using an expression

P,(x)-- (x-- 1)-{x
one obtains,

p,(e/)__ exp (/- lp/m)
sin (/m)

(sin ((p+l)/m)+(k-1) sin ((p--1)/m)}.
Put p tm+r for some integers t, r with 0_rm. One may

assume r:/:0. Then in the above expression two terms sin ((p+l)/m)
=(--1) sin ((r+l)/m), sin ((p-1)/m)=(-1) sin ((r-1)z/m) have the
same sign (--1), so that sum becomes zero iff (r+l)/m, (r-1)/m e Z,
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which implies m-2, r 1.
Proof of 3. Suppose that there exist integers m, m, ..., m,n_,

such that ]-I eta--- 1. By taking the absolute values of both sides
--1. Hence m-1. Consider the action of the Galois group of the
splitting field of P,=0 over Q on the roots of P,=0. Since P, is
irreducible there exists an element a of the Galois group such that a,--- and a induces a permutation of , +/- to some of,[’p/2"] "’’[p/2]+1 -1" Applying a on the relation 1-I e- _+ 1, one gets a’ I-[ . a()
-_+ 1. Again taking the absolute values of both sides, one get m-0.
Repeating this process, one proves m-m--m m/_--O.

This completes the proof of the theorem.
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