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104. Certain Irreducible Polynomials with Multiplicatively
Independent Roots

By Kyoji SAITO
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J.A., Nov. 12, 1982)

§ 1. Statement of the results. For an integer £>3, let us define
a polynomial P, , of degree p>4:
P, (@)=a"+ k@ ' +a? "+ +a)+ 1.
In this note, we prove the following theorem.
Theorem. 1. For even p, P, (x) is irreducible over Z. For odd
p, (®+1)'P, () is irreducible over Z.
2. The polynomial has the following decompositions.

P, ,@)=@+a)(@®+a") pﬁl (x—e)(®—e)  for evenp

1

—@AD@+)@+re) | @—e)@—s)  for odd p

i=1
where a 18 o real number such that 0<|a—k+1|<(k—1)"*» and |e,|
=1, i=1, --.,[p/2]—1. Here ¢ means the complex conjugate of ¢ and
e|=Vee.

3. The roots a,e, - -+, &p0y-1 i the above expression are multipli-
catively independent in C*={a e C: a+0}.

The theorem is proven in [1] § 3 (8.8) 2) for the case k=3. Then
Prof. G. Fujisaki asked the author whether it is true for £>3. In
fact it is true as we see in thig note. The author would like to express
his gratitude to Prof. G. Fujisaki.

§2. A sketch of the proof of the theorem. For a fixed %, the

sequence P,=P, ,, p>4 of the polynomials satisfies the following
recursion formula.

2.1 P, @)=@"+1DP,(x)—2*P, (x)  for p>4.
Define new polynomials in z=x-+2* by,
(2‘2) Qq(z) :=x—qP2q(x) CI=2, 39 4, e

R,(2) :=(@x+1) 2" P,,,(®) 7=2,3,4, - --.

Then the recursion formula (2.1) turns out to be,

(2.3) Q1 (R =2Q,(?)—Q,_,(2) q=2, .-
R,..(2)=2R,(2)—R,_,(2) q=2,---.

Now let us show the following assertion.

Assertion. The equation Q,(z)=0 (resp. R,(2)=0) has q real simple
roots. q—1 of them lie in the interval (—2, 2) and the remaining one
lies in the interval (— oo, —2).
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Furthermore in each connected component of R-{roots of Q,(z)=0}
(resp. R-{roots of R (2)=0}), there exists exactly one root of Q,.,,(z)=0
(resp. R,,,(2)=0).

Proof of the assertion. We prove the assertion only for the se-
quence @,(z), since the other case is shown completely parallel to that
case.

We prove the assertion by induction on ¢, where the statements
is trivially true for ¢=2, Q,=2*4+kz+k—2.

Let 8, - - -, B, be roots of Q,(2)=0 such that 2>8,>...>,_,>—2
>B,. It is enough to show that there exists at least one root of Q,.,(2)
=0on eaCh interva'l (.Bv 2), (ﬁzy ,31)’ ] (}gq—v ‘Bq—z)’ (_2’ ‘Bq-l) and (—Oov
8. By induction hypothesis, (—1)*'Q,_,(8;)>0fori=1, --.,q. Then
using the recursion (2.3),

2.9 (—1'Q,.(B)>0  fori=1,---,q.
On the other hand, one computes easily

(2.5 Qen(2)=24(2¢+1)k>0

(2.6) Qi1(—2)=(—-D4(k—2)/2¢"
2.7 lim Q,,,(2)=(—1)%o.

Now looking carefully the change of the sign of the values of the
function Q,,,(2), z € R in (2.4)-(2.7), one proves the assertion.

Proof of 2. A root g of Q,(2) in the interval (—2,2) corresponds
to two roots x*—px+1=0 of P,,(x)=0 with absolute value equal to 1
and a root B of Q,(2) in the interval (— oo, —2) corresponds to two
minus real roots of P,,(x)=0. Hence 2 of the theorem is shown.

Proof of 1. First let us show that if P, ,(x) is reducible to
Q.(%)Q,(x), then either one of Q,(x) is a cyclotomic polynomial. First
Q:(0)Q.(0)=P, ,(0)=1. Hence Q;(0)==+1. i.e. []., w00, |@;/=1. Hence
in the decomposition of 2, if —« is a root of Q,(x)=0, —a~* should be
a root of Q,(x) also. Then the root of Q,()=0 consists only of num-
bers ¢ with |¢|=1, which means that Q,(x) is a cyclotomic polynomial
due to a theorem of Kronecker.

Suppose P, ,(x) is reducible and has a root exp (2z+/—1/m) for a
integer m>2. Using an expression

P, ,(@)=@—1) "z =14 (k—-1)(2* —x)}
one obtains,
P, p(eVsz/m)= exp (x/———ipn'/’m)
' sin (z/m)
X {sin (@ +1)x/m)+ (k—1) sin (p— Dz /m)}.

Put p=tm-4r for some integers t,r with 0<r<<m. One may
assume r+0. Then in the above expression two terms sin ((p+1)x/m)
=(—=1)'sin ((r+1)x/m), sin (p —1)z/m)=(—1)! sin ((r—1)z/m) have the
same sign (—1)%, so that sum becomes zero iff (r+1)/m, (r—1)/me Z,
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which implies m=2, r=1.

Proof of 3. Suppose that there exist integers m, m,, - - -, M1
such that a™ [],em=+1. By taking the absolute values of both sides
a™=1. Hence m=1. Consider the action of the Galois group of the
splitting field of P, ,=0 over @ on the roots of P, ,=0. Since P, , is
irreducible there exists an element ¢ of the Galois group such that g,
= —a and ¢ induces a permutation of &7, - - -, ¢%yy_, to some of ¢, - - -,
eiym-1-  Applying o on the relation []; e7/==+1, one gets a™ [] ., a(e)™
=41. Again taking the absolute values of both sides, one get m,=0.
Repeating this process, one proves m=m,=m,=- - - =M, =0.

This completes the proof of the theorem.
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