104. Certain Irreducible Polynomials with Multiplicatively Independent Roots

By Kyoji Saito
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1982)

§ 1. Statement of the results. For an integer $k \geq 3$, let us define a polynomial $P_{k, p}$ of degree $p \geq 4$:

$$
P_{k, p}(x)=x^{p}+k\left(x^{p-1}+x^{p-2}+\cdots+x\right)+1 .
$$

In this note, we prove the following theorem.
Theorem. 1. For even $p, P_{k, p}(x)$ is irreducible over Z. For odd $p,(x+1)^{-1} P_{k, p}(x)$ is irreducible over Z.
2. The polynomial has the following decompositions.

$$
\begin{aligned}
P_{k, p}(x) & =(x+\alpha)\left(x+\alpha^{-1}\right) \prod_{i=1}^{p / 2-1}\left(x-\varepsilon_{i}\right)\left(x-\bar{\varepsilon}_{i}\right) \quad \text { for even } p \\
& =(x+1)(x+\alpha)\left(x+\alpha^{-1}\right) \prod_{i=1}^{(p-1) / 2-1}\left(x-\varepsilon_{i}\right)\left(x-\bar{\varepsilon}_{i}\right) \quad \text { for odd } p
\end{aligned}
$$

where α is a real number such that $0<|\alpha-k+1|<(k-1)^{-(p-3)}$ and $\left|\varepsilon_{i}\right|$ $=1, i=1, \cdots,[p / 2]-1$. Here $\bar{\varepsilon}$ means the complex conjugate of ε and $|\varepsilon|=\sqrt{\varepsilon} \bar{\varepsilon}$.
3. The roots $\alpha, \varepsilon_{1}, \cdots, \varepsilon_{[p / 2]-1}$ in the above expression are multiplicatively independent in $C^{\times}=\{\alpha \in C: \alpha \neq 0\}$.

The theorem is proven in [1] § $3(3.8) 2$) for the case $k=3$. Then Prof. G. Fujisaki asked the author whether it is true for $k \geq 3$. In fact it is true as we see in this note. The author would like to express his gratitude to Prof. G. Fujisaki.
§ 2. A sketch of the proof of the theorem. For a fixed k, the sequence $P_{p}=P_{k, p}, p \geq 4$ of the polynomials satisfies the following recursion formula.

$$
\begin{equation*}
P_{p+2}(x)=\left(x^{2}+1\right) P_{p}(x)-x^{2} P_{p-2}(x) \quad \text { for } p \geq 4 . \tag{2.1}
\end{equation*}
$$

Define new polynomials in $z=x+x^{-1}$ by,

$$
\begin{array}{ll}
Q_{q}(z):=x^{-q} P_{2 q}(x) & q=2,3,4, \ldots \tag{2.2}\\
R_{q}(z):=(x+1)^{-1} x^{-q} P_{2 q+1}(x) & q=2,3,4, \ldots
\end{array}
$$

Then the recursion formula (2.1) turns out to be,

$$
\begin{array}{ll}
Q_{q+1}(z)=z Q_{q}(z)-Q_{q-1}(z) & q=2, \cdots \tag{2.3}\\
R_{q+1}(z)=z R_{q}(z)-R_{q-1}(z) & q=2, \cdots
\end{array}
$$

Now let us show the following assertion.
Assertion. The equation $Q_{q}(z)=0\left(\right.$ resp. $\left.R_{q}(z)=0\right)$ has q real simple roots. $q-1$ of them lie in the interval $(-2,2)$ and the remaining one lies in the interval $(-\infty,-2)$.

Furthermore in each connected component of \boldsymbol{R}-\{roots of $\left.Q_{q}(z)=0\right\}$ (resp. R-\{roots of $\left.R_{q}(z)=0\right\}$), there exists exactly one root of $Q_{q+1}(z)=0$ (resp. $\left.R_{q+1}(z)=0\right)$.

Proof of the assertion. We prove the assertion only for the sequence $Q_{q}(z)$, since the other case is shown completely parallel to that case.

We prove the assertion by induction on q, where the statements is trivially true for $q=2, Q_{2}=z^{2}+k z+k-2$.

Let $\beta_{1}, \cdots, \beta_{q}$ be roots of $Q_{q}(z)=0$ such that $2>\beta_{1}>\cdots>\beta_{q-1}>-2$ $>\beta_{q}$. It is enough to show that there exists at least one root of $Q_{q+1}(z)$ $=0$ on each interval $\left(\beta_{1}, 2\right),\left(\beta_{2}, \beta_{1}\right), \cdots,\left(\beta_{q-1}, \beta_{q-2}\right),\left(-2, \beta_{q-1}\right)$ and $(-\infty$, β_{q}). By induction hypothesis, $(-1)^{i-1} Q_{q-1}\left(\beta_{i}\right)>0$ for $i=1, \cdots, q$. Then using the recursion (2.3),

$$
\begin{equation*}
(-1)^{i} Q_{q+1}\left(\beta_{i}\right)>0 \quad \text { for } i=1, \cdots, q \tag{2.4}
\end{equation*}
$$

On the other hand, one computes easily

$$
\begin{align*}
& Q_{q+1}(2)=2+(2 q+1) k>0 \tag{2.5}\\
& Q_{q+1}(-2)=(-1)^{q}(k-2) / 2^{q+1} \tag{2.6}\\
& \lim _{z \rightarrow-\infty} Q_{q+1}(z)=(-1)^{q} \infty \tag{2.7}
\end{align*}
$$

Now looking carefully the change of the sign of the values of the function $Q_{q+1}(z), z \in R$ in (2.4)-(2.7), one proves the assertion.

Proof of 2. A root β of $Q_{q}(z)$ in the interval $(-2,2)$ corresponds to two roots $x^{2}-\beta x+1=0$ of $P_{2 p}(x)=0$ with absolute value equal to 1 and a root β of $Q_{q}(z)$ in the interval ($-\infty,-2$) corresponds to two minus real roots of $P_{2 p}(x)=0$. Hence 2 of the theorem is shown.

Proof of 1. First let us show that if $P_{k, p}(x)$ is reducible to $Q_{1}(x) Q_{2}(x)$, then either one of $Q_{i}(x)$ is a cyclotomic polynomial. First $Q_{1}(0) Q_{2}(0)=P_{k, p}(0)=1$. Hence $Q_{i}(0)= \pm 1$. i.e. $\prod_{\alpha_{j} ; \text { root of } Q_{1} \mid}\left|\alpha_{j}\right|=1$. Hence in the decomposition of 2 , if $-\alpha$ is a root of $Q_{1}(x)=0,-\alpha^{-1}$ should be a root of $Q_{1}(x)$ also. Then the root of $Q_{2}(x)=0$ consists only of numbers ε with $|\varepsilon|=1$, which means that $Q_{2}(x)$ is a cyclotomic polynomial due to a theorem of Kronecker.

Suppose $P_{k, p}(x)$ is reducible and has a root $\exp (2 \pi \sqrt{-1} / m)$ for a integer $m>2$. Using an expression

$$
P_{k, p}(x)=(x-1)^{-1}\left\{x^{p+1}-1+(k-1)\left(x^{p}-x\right)\right\}
$$

one obtains,

$$
\begin{aligned}
P_{k, p}\left(e^{\sqrt{-1} 2 \pi / m}\right)= & \frac{\exp (\sqrt{-1} p \pi / m)}{\sin (\pi / m)} \\
& \times\{\sin ((p+1) \pi / m)+(k-1) \sin ((p-1) \pi / m)\} .
\end{aligned}
$$

Put $p=t m+r$ for some integers t, r with $0 \leq r<m$. One may assume $r \neq 0$. Then in the above expression two terms $\sin ((p+1) \pi / m)$ $=(-1)^{t} \sin ((r+1) \pi / m), \sin ((p-1) \pi / m)=(-1)^{t} \sin ((r-1) \pi / m)$ have the same sign $(-1)^{t}$, so that sum becomes zero iff $(r+1) / m,(r-1) / m \in \boldsymbol{Z}$,
which implies $m=2, r=1$.
Proof of 3. Suppose that there exist integers $m, m_{1}, \cdots, m_{[p / 2]-1}$, such that $\alpha^{m} \prod_{j} \varepsilon_{j}^{m_{j}}= \pm 1$. By taking the absolute values of both sides $\alpha^{m}=1$. Hence $m=1$. Consider the action of the Galois group of the splitting field of $P_{k, p}=0$ over \boldsymbol{Q} on the roots of $P_{k, p}=0$. Since $P_{k, p}$ is irreducible there exists an element σ of the Galois group such that $\sigma \varepsilon_{1}$ $=-\alpha$ and σ induces a permutation of $\varepsilon_{2}^{ \pm 1}, \cdots, \varepsilon_{[p / 2]-1}^{ \pm 1}$ to some of $\varepsilon_{1}^{ \pm 1}, \cdots$, $\varepsilon_{[p / 2-1}^{ \pm 1}$. Applying σ on the relation $\prod_{j} \varepsilon_{j}^{m_{j}}= \pm 1$, one gets $\alpha^{m_{1}} \prod_{j \geq 2} \sigma\left(\varepsilon_{j}\right)^{m_{j}}$ $= \pm 1$. Again taking the absolute values of both sides, one get $m_{1}=0$. Repeating this process, one proves $m=m_{1}=m_{2}=\cdots=m_{[p / 2]-1}=0$.

This completes the proof of the theorem.

Reference

[1] K. Saito: The zeroes of characteristic function χ_{f} for the exponents of a hypersurface isolated singular point. Advanced Studies in Pure Mathematics, 1, 193-215 (1982).

