104. Certain Irreducible Polynomials with Multiplicatively Independent Roots

By Kyoji SAITO

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1982)

§ 1. Statement of the results. For an integer $k \ge 3$, let us define a polynomial $P_{k,p}$ of degree $p \ge 4$:

$$P_{k,p}(x) = x^{p} + k(x^{p-1} + x^{p-2} + \cdots + x) + 1.$$

In this note, we prove the following theorem.

Theorem. 1. For even p, $P_{k,p}(x)$ is irreducible over Z. For odd p, $(x+1)^{-1}P_{k,p}(x)$ is irreducible over Z.

2. The polynomial has the following decompositions.

$$\begin{split} P_{k,p}(x) &= (x+\alpha)(x+\alpha^{-1}) \prod_{i=1}^{p/2-1} (x-\varepsilon_i)(x-\bar{\varepsilon}_i) \quad for \ even \ p \\ &= (x+1)(x+\alpha)(x+\alpha^{-1}) \prod_{i=1}^{(p-1)/2-1} (x-\varepsilon_i)(x-\bar{\varepsilon}_i) \quad for \ odd \ p \end{split}$$

where α is a real number such that $0 < |\alpha - k + 1| < (k-1)^{-(p-3)}$ and $|\varepsilon_i| = 1, i=1, \cdots, [p/2]-1$. Here ε means the complex conjugate of ε and $|\varepsilon| = \sqrt{\varepsilon \varepsilon}$.

3. The roots α , ε_1 , \cdots , $\varepsilon_{\lfloor p/2 \rfloor - 1}$ in the above expression are multiplicatively independent in $C^{\times} = \{\alpha \in C : \alpha \neq 0\}.$

The theorem is proven in [1] § 3 (3.8) 2) for the case k=3. Then Prof. G. Fujisaki asked the author whether it is true for $k\geq 3$. In fact it is true as we see in this note. The author would like to express his gratitude to Prof. G. Fujisaki.

§2. A sketch of the proof of the theorem. For a fixed k, the sequence $P_p = P_{k,p}$, $p \ge 4$ of the polynomials satisfies the following recursion formula.

(2.1)
$$P_{p+2}(x) = (x^2+1)P_p(x) - x^2P_{p-2}(x)$$
 for $p \ge 4$.
Define new polynomials in $z = x + x^{-1}$ by,
(2.2) $Q_q(z) := x^{-q}P_{2q}(x)$ $q = 2, 3, 4, \cdots$
 $R_q(z) := (x+1)^{-1}x^{-q}P_{2q+1}(x)$ $q = 2, 3, 4, \cdots$.
Then the recursion formula (2.1) turns out to be,
(2.3) $Q_{q+1}(z) = zQ_q(z) - Q_{q-1}(z)$ $q = 2, \cdots$
 $R_{q+1}(z) = zR_q(z) - R_{q-1}(z)$ $q = 2, \cdots$.
Now let us show the following assertion

Now let us show the following assertion.

Assertion. The equation $Q_q(z)=0$ (resp. $R_q(z)=0$) has q real simple roots. q-1 of them lie in the interval (-2, 2) and the remaining one lies in the interval $(-\infty, -2)$.

Furthermore in each connected component of R-{roots of $Q_a(z)=0$ } (resp. **R**-{roots of $R_q(z)=0$ }), there exists exactly one root of $Q_{q+1}(z)=0$ (resp. $R_{q+1}(z)=0$).

Proof of the assertion. We prove the assertion only for the sequence $Q_a(z)$, since the other case is shown completely parallel to that case.

We prove the assertion by induction on q, where the statements is trivially true for q=2, $Q_2=z^2+kz+k-2$.

Let β_1, \dots, β_q be roots of $Q_q(z) = 0$ such that $2 > \beta_1 > \dots > \beta_{q-1} > -2$ $>\beta_q$. It is enough to show that there exists at least one root of $Q_{q+1}(z)$ =0 on each interval $(\beta_1, 2), (\beta_2, \beta_1), \dots, (\beta_{q-1}, \beta_{q-2}), (-2, \beta_{q-1})$ and $(-\infty,$ β_q). By induction hypothesis, $(-1)^{i-1}Q_{q-1}(\beta_i) > 0$ for $i=1, \dots, q$. Then using the recursion (2.3),

for $i=1, \dots, q$. $(-1)^{i}Q_{q+1}(\beta_{i}) > 0$ (2.4)On the other hand, one computes easily

 $Q_{q+1}(2) = 2 + (2q+1)k > 0$ (2.5)

$$\begin{split} & Q_{q+1}(-2) \!=\! (-1)^q (k\!-\!2)/2^{q+1} \\ & \lim \, Q_{q+1}(z) \!=\! (-1)^q \infty. \end{split}$$
(2.6)

(2.7)

Now looking carefully the change of the sign of the values of the function $Q_{q+1}(z)$, $z \in \mathbf{R}$ in (2.4)–(2.7), one proves the assertion.

Proof of 2. A root β of $Q_q(z)$ in the interval (-2, 2) corresponds to two roots $x^2 - \beta x + 1 = 0$ of $P_{2p}(x) = 0$ with absolute value equal to 1 and a root β of $Q_q(z)$ in the interval $(-\infty, -2)$ corresponds to two minus real roots of $P_{2p}(x)=0$. Hence 2 of the theorem is shown.

Proof of 1. First let us show that if $P_{k,p}(x)$ is reducible to $Q_i(x)Q_2(x)$, then either one of $Q_i(x)$ is a cyclotomic polynomial. First $Q_1(0)Q_2(0) = P_{k,p}(0) = 1$. Hence $Q_i(0) = \pm 1$. i.e. $\prod_{\alpha_j : \text{root of } Q_1} |\alpha_j| = 1$. Hence in the decomposition of 2, if $-\alpha$ is a root of $Q_i(x) = 0$, $-\alpha^{-1}$ should be a root of $Q_1(x)$ also. Then the root of $Q_2(x)=0$ consists only of numbers ε with $|\varepsilon|=1$, which means that $Q_2(x)$ is a cyclotomic polynomial due to a theorem of Kronecker.

Suppose $P_{k,p}(x)$ is reducible and has a root $\exp(2\pi\sqrt{-1}/m)$ for a integer m > 2. Using an expression

 $P_{k,p}(x) = (x-1)^{-1} \{x^{p+1}-1+(k-1)(x^p-x)\}$

one obtains,

$$P_{k,p}(e^{\sqrt{-1}2\pi/m}) = \frac{\exp(\sqrt{-1}p\pi/m)}{\sin(\pi/m)} \times \{\sin((p+1)\pi/m) + (k-1)\sin((p-1)\pi/m)\}$$

Put p = tm + r for some integers t, r with $0 \le r < m$. One may assume $r \neq 0$. Then in the above expression two terms $\sin\left(\frac{p+1}{\pi}\right)$ $=(-1)^{t} \sin((r+1)\pi/m)$, $\sin((p-1)\pi/m)=(-1)^{t} \sin((r-1)\pi/m)$ have the same sign $(-1)^t$, so that sum becomes zero iff (r+1)/m, $(r-1)/m \in \mathbb{Z}$,

No. 9]

which implies m=2, r=1.

Proof of 3. Suppose that there exist integers $m, m_1, \dots, m_{\lfloor p/2 \rfloor^{-1}}$, such that $\alpha^m \prod_j \varepsilon_j^{m_j} = \pm 1$. By taking the absolute values of both sides $\alpha^m = 1$. Hence m = 1. Consider the action of the Galois group of the splitting field of $P_{k,p} = 0$ over Q on the roots of $P_{k,p} = 0$. Since $P_{k,p}$ is irreducible there exists an element σ of the Galois group such that $\sigma\varepsilon_1$ $= -\alpha$ and σ induces a permutation of $\varepsilon_2^{\pm 1}, \dots, \varepsilon_{\lfloor p/2 \rfloor - 1}^{\pm 1}$ to some of $\varepsilon_1^{\pm 1}, \dots, \varepsilon_{\lfloor p/2 \rfloor - 1}^{\pm 1}$. Applying σ on the relation $\prod_j \varepsilon_j^{m_j} = \pm 1$, one gets $\alpha^{m_1} \prod_{j \ge 2} \sigma(\varepsilon_j)^{m_j}$ $= \pm 1$. Again taking the absolute values of both sides, one get $m_1 = 0$. Repeating this process, one proves $m = m_1 = m_2 = \dots = m_{\lfloor p/2 \rfloor - 1} = 0$.

This completes the proof of the theorem.

Reference

K. Saito: The zeroes of characteristic function \(\chi_f\) for the exponents of a hypersurface isolated singular point. Advanced Studies in Pure Mathematics, 1, 193-215 (1982).