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(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1982)

1o Introduction. The connections between the primes and the
zeros of the Riemann zeta function (s) have been expressed in the
explicit formulae since Riemann. It is Landau who showed some
arithmetical connection between them; on the Riemann Hypothesis,

{ lgp ifa=klogplim 1__ er= 2rP/2
r T Or<T

otherwise,
where r runs over the positive imaginary parts of the zeros of (s), p
is a prime and k is an integer 1. Here we remark the following
arithmetical connection between the zeros and the rationals which we
have remarked in [3] and [4].

Theorem 1. Let be a positive number and b be a real number
1. Then on the Riemann Hypothesis,

r- T 2rearT

{:et/4C(a) ifb=landaisrational
2

otherwise,
where C(a)=Z(k)/((k)) with the M6bius function Z(k) and the Euler
function (k) when a=l/k, and k are integers 1 and (1, k)=l.

In fact, we have proved a theorem on c<r e(" for more general

f without assuming any unproved hypothesis and given a different
proof to the author’s previous result (cf. [2]) which states that f(7) is
uniformly distributed mod one, where f(7) may be, for example,
log r/log log log , 7(log 7) with bl and . Landau’s theorem and

Theorem 1 can be extended to Dirichlet L-functions L(s, ) and these
have also q-analogues (cf. [4]). We state here only a q-analogue of
Theorem 1. Let ’ denote the summation over all non-principal char-
acters mod q. We suppose, for simplicity, that q runs over the
primes. Let () denote an imaginary pa of the non-trivial zeros of
L(s, ). Then our q-analogue of Theorem 1 can be stated as follows.

Theorem 2. Let be an integer, be a positive number and b
be a real number 1. We assume the generalized Riemann Hypothesis
and suppose that T= T(q) satisfies q(log q)S(( T(( q, where r is a con-
stant depending on , BBo and A is an arbitrarily large constant.
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If b=l, ]=1 and is rational and =l/k, (/, k)=l, 1=</, k, then for any
r relatively prime to k,

lim 1 ,, e,:oz/= e/C()e-/
qr (rood )

where r-1 (rood k) and C(a) has the same meaning as in Theorem
1. Otherwise,

We have proved our theorems with the remainder terms and, in
Theorem 2 may be taken as Max (5+3, 4+20, 2-, (3/2)+15)
[3] and [4] for full details).

We remark next that a slight modification o the author’s [1]
gives the following arithmetical connection between the zeros and the
primes.

Theorem . For any b bo and any relatively prime integers a
and kl, there exists infinitely many primes which are congruent to
a rood k and are of the form [ log /b log log ].

We remark that b log log in Theorem 3 can be replaced by
if (x) satisfies the following conditions. (x) is a positive increasing
unction with continuous derivatives up to three times, satisfies
log log x (((x) ((log x and (x) (x) for any positive constant c and
satisfies either

1) ()(x)/(x)=o(x- (log x)-) or ]=1, 2, 3, or
2) ()(x)/(x)=ax- (log x)- + x- (log x)-(u(x))- (b + o(1))

for ] 1, 2, 3,
where u(x) is some positive increasing unction which tends to as
x, is (((log x)" for some positive constant D and satisfies u(x)
u(x) for any positive constant c, ai:--a:a/2O and i a,=l, then
we suppose further that 2b+b#O, 3b+b#O and 4b+5b+b#O.
We remark also that i we assume the Riemann Hypothesis, (x)need
not be >>loglogx but must be >>1 as in [1]. And that if (x)
>>log x/log log log x, then by Littlewood’s theorem (c. Theorem 9.12
of [12]) every sufficiently large integer can be written as [y log y/()].

We shall prove our Theorem 3 in 2.

2. Proof of Theorem . The same analysis as [1] proves The-
orem 3. So we remark only how to modify it. We suppose that X
X0 and lg k(((log X) with some positive constant E. We put f(x)
=x log x/(x) and h(x)=f-(x) or X)Xo, where (x) satisfies the
conditions in the introduction. Since [f()]=p if and only i
p + 1, we shall estimate

where p runs over the primes which are in X/2pXand --a (rood
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S=_1__ L(h(u+l))--L(h(u)).du+O(Xe-Cx)
p(k) x/. log u

-bp (S(h(p-b 1))-S(h(p))).
where L(t)=(t/2) log t--((l+log 2)/2u)t, S(t)=(1/) arg (1/2-bit) as
usual, C is some positive constant and we have used the Riemann-von
Mangoldt 2ormula and the prime number theorem. We put y=X1/

with /=b log log X, b b0 and use Selberg’s explicit ormula or S(t)
(cf. p. 125 of [10]). Then the estimation o the last sum in S is re-
duced to the estimates o the ollowing type. o sums.

S= e() S= a(r)r-() ,
S a’(r)r-(’) and

p ryl r

S,= (,(>- 1/2) ’’’-’/,
P

where B#0, r runs over the primes, a(r)<<log r/log y or r<y, a’(r)
1 or ry/, lgy, y<<(h(X))/ and a,t=1/2+2 Max, (fl--1/2,
2/logy), p running over the zeros fl+iy o 5(s) or which
gy(-/) /log y. We remark that h"(x) -(h(x))(h(x))-(log h(x))-A
and h"(x)(h(x))(h(x))- (log h(x))-A, where A A 1 i (x)
satisfies 1) and A=l--a-(2b +b)(u(h(x)))- and A=l-a+(3b+b)
(u(h(x)))- i (x) satisfies 2). Consequently, the analysis in pp. 118-
122 of [1] gives us

S <<X(B’/+ B I- I/)
where denotes some positive number 1. S and S can be estimated
as in p. 123 o [1], and we get

S, S<<X/(k) log X.
Now we estimate S.

S= X +’ (a,(>- 1/2).’’
(k)(log X)(log y)

where the dash indicates that we sum over all p’s which satisfy
1/2)4/log y, X/2p X and p a (rood k). The last sum is

((" (fl--1/2)(-/) X/2pX p--a (mod k), h(p)-
log y

((E" (--1/2)(Y)(-/) (log X)/(k(X) log y)+" (fl-1/2)(-/)

s dog x) /(k(X) og y)+S,
say, where, the double dash indicates that we sum over all p=fl +iy or
which fl1/2+2/log y and

z " + (dog (y)(a- 1/2)
ka12 211og y

+2(a- 1 /2))(y)<-)da
<<dog y)- I{Zi; /22/oy,
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+ h(X) log h(X) ((log (y)(a- 1/2)
1/2 2/log y

+2(a-- 1/2))h(X)-1/8(-m))da
((h(X)(log X)(log y)-e-’/

by Selberg’s density estimate near a-1/2 (cf. Theorem 1 of [10]).
the same way, we get the estimate of $6 and get

( log X 1) h(X)e-’/ log X$4 X(o(k)(log X)(log y))-i +, k(X) log y (log y)
Consequently, we get

S(h(p)), S(h(p + 1)) X log log X.
p p (k) log X

Hence we get

S= 1 L(h(u+l))-L(h(u)) du+O(.XloglogX).(k) x/ log u (k) log X
This is }}X(X)/((k) log X) if (X) }} log log X.
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