# 103. Zeros, Primes and Rationals 

By Akio FuJII<br>Department of Mathematics, Rikkyo University<br>(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1982)

§ 1. Introduction. The connections between the primes and the zeros of the Riemann zeta function $\zeta(s)$ have been expressed in the explicit formulae since Riemann. It is Landau who showed some arithmetical connection between them; on the Riemann Hypothesis,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{0<r<T} e^{i a a_{T}}= \begin{cases}-\frac{\log p}{2 \pi p^{k / 2}} & \text { if } a=k \log p \\ 0 & \text { otherwise }\end{cases}
$$

where $\gamma$ runs over the positive imaginary parts of the zeros of $\zeta(s), p$ is a prime and $k$ is an integer $\geqq 1$. Here we remark the following arithmetical connection between the zeros and the rationals which we have remarked in [3] and [4].

Theorem 1. Let $\alpha$ be a positive number and $b$ be a real number $\leqq 1$. Then on the Riemann Hypothesis,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} & \frac{1}{T} \sum_{2 \pi e \alpha<r \leq T} e^{i r(\log (\gamma / 2 \pi e \alpha))^{b}} \\
& = \begin{cases}-\frac{e^{i \pi / 4}}{2 \pi} C(\alpha) & \text { if } b=1 \text { and } \alpha \text { is rational } \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

where $C(\alpha)=\mu(k) /(\sqrt{\alpha} \varphi(k))$ with the Möbius function $\mu(k)$ and the Euler function $\varphi(k)$ when $\alpha=l / k, l$ and $k$ are integers $\geqq 1$ and $(l, k)=1$.

In fact, we have proved a theorem on $\sum_{c<r \Xi T} e^{i f(r)}$ for more general $f$ without assuming any unproved hypothesis and given a different proof to the author's previous result (cf. [2]) which states that $f(\gamma)$ is uniformly distributed mod one, where $f(\gamma)$ may be, for example, $\gamma \log \gamma / \log \log \log \gamma, \gamma(\log \gamma)^{b}$ with $b<1$ and $\gamma$. Landau's theorem and Theorem 1 can be extended to Dirichlet $L$-functions $L(s, \chi)$ and these have also $q$-analogues (cf. [4]). We state here only a $q$-analogue of Theorem 1. Let $\sum_{x}^{\prime}$ denote the summation over all non-principal characters $\chi \bmod q$. We suppose, for simplicity, that $q$ runs over the primes. Let $\gamma(\chi)$ denote an imaginary part of the non-trivial zeros of $L(s, \chi)$. Then our $q$-analogue of Theorem 1 can be stated as follows.

Theorem 2. Let $\eta$ be an integer, $\alpha$ be a positive number and $b$ be a real number $\leqq 1$. We assume the generalized Riemann Hypothesis and suppose that $T=T(q)$ satisfies $q^{\nu}(\log q)^{B} \ll T \ll q^{A}$, where $\nu$ is a constant depending on $\eta, B>B_{0}$ and $A$ is an arbitrarily large constant.

If $b=1, \eta=1$ and $\alpha$ is rational and $=l / k,(l, k)=1,1 \leqq l, k$, then for any $r$ relatively prime to $k$,

$$
\lim _{\substack{q=r^{q \rightarrow \infty}(\bmod k)}} \frac{1}{T \sqrt{q}} \sum_{x}^{\prime} \sum_{(2 \pi e \alpha / q)<r(x) \leq r} e^{i r(x)\left(\log \left(r(x) q^{\eta} / 2 \pi e \alpha\right)\right)^{b}}=-\frac{e^{i \pi / 4}}{2 \pi} C(\alpha) e^{-2 \pi i l \tau / k},
$$

where $r \bar{r} \equiv-1(\bmod k)$ and $C(\alpha)$ has the same meaning as in Theorem 1. Otherwise,

$$
\lim _{q \rightarrow \infty} \frac{1}{T \sqrt{q}} \sum_{x} \sum_{(2 \pi e \alpha / q \eta)<r(x) \leq T} e^{i r(x)\left(\log \left(r(x) q^{\eta} / 2 \pi e \alpha\right)\right)^{b}}=0 .
$$

We have proved our theorems with the remainder terms and $\nu$ in Theorem 2 may be taken as $\operatorname{Max}(5 \eta+3,4 \eta+20,2-\eta,(3 \eta / 2)+15)$ (cf. [3] and [4] for full details).

We remark next that a slight modification of the author's [1] gives the following arithmetical connection between the zeros and the primes.

Theorem 3. For any $b>b_{0}$ and any relatively prime integers a and $k \geqq 1$, there exists infinitely many primes which are congruent to $a \bmod k$ and are of the form $[\gamma \log \gamma / b \log \log \gamma]$.

We remark that $b \log \log \gamma$ in Theorem 3 can be replaced by $\Phi(\gamma)$ if $\Phi(x)$ satisfies the following conditions. $\Phi(x)$ is a positive increasing function with continuous derivatives up to three times, satisfies $\log \log x \ll \Phi(x) \ll \log x$ and $\Phi\left(x^{c}\right) \cong \Phi(x)$ for any positive constant $c$ and satisfies either

1) $\Phi^{(j)}(x) / \Phi(x)=o\left(x^{-j}(\log x)^{-1}\right)$ for $j=1,2,3$, or
2) $\Phi^{(j)}(x) / \Phi(x)=a_{j} x^{-j}(\log x)^{-1}+x^{-j}(\log x)^{-1}(u(x))^{-1}\left(b_{j}+o(1)\right)$ for $j=1,2,3$,
where $u(x)$ is some positive increasing function which tends to $\infty$ as $x \rightarrow \infty$, is $\ll(\log x)^{D}$ for some positive constant $D$ and satisfies $u\left(x^{c}\right)$ $\cong u(x)$ for any positive constant $c, a_{1}=-a_{2}=a_{3} / 2 \neq 0$ and if $a_{1}=1$, then we suppose further that $2 b_{1}+b_{2} \neq 0,3 b_{2}+b_{3} \neq 0$ and $4 b_{1}+5 b_{2}+b_{3} \neq 0$. We remark also that if we assume the Riemann Hypothesis, $\Phi(x)$ need not be $\gg \log \log x$ but must be $\gg 1$ as in [1]. And that if $\Phi(x)$ $\gg \log x / \log \log \log x$, then by Littlewood's theorem (cf. Theorem 9.12 of [12]) every sufficiently large integer can be written as $[\gamma \log \gamma / \Phi(\gamma)]$.

We shall prove our Theorem 3 in § 2.
§ 2. Proof of Theorem 3. The same analysis as [1] proves Theorem 3. So we remark only how to modify it. We suppose that $X$ $>X_{0}$ and $1 \leqq k \ll(\log X)^{E}$ with some positive constant $E$. We put $f(x)$ $=x \log x / \Phi(x)$ and $h(x)=f^{-1}(x)$ for $X>X_{0}$, where $\Phi(x)$ satisfies the conditions in the introduction. Since $[f(\gamma)]=p$ if and only if $p \leqq f(\gamma)$ $<p+1$, we shall estimate

$$
S \equiv \sum_{p}|\{\gamma: h(p) \leqq \gamma<h(p+1)\}|,
$$

where $p$ runs over the primes which are in $X / 2<p<X$ and $\equiv a(\bmod k)$.

$$
\begin{aligned}
S= & \frac{1}{\varphi(k)} \int_{X / 2}^{X} \frac{L(h(u+1))-L(h(u))}{\log u} d u+O\left(X e^{-c \sqrt{\log x}}\right) \\
& +\sum_{p}(S(h(p+1))-S(h(p))) .
\end{aligned}
$$

where $L(t)=(t / 2 \pi) \log t-((1+\log 2 \pi) / 2 \pi) t, S(t)=(1 / \pi) \arg \zeta(1 / 2+i t)$ as usual, $C$ is some positive constant and we have used the Riemann-von Mangoldt formula and the prime number theorem. We put $y=X^{1 / 4}$ with $\Delta=b \log \log X, b>b_{0}$ and use Selberg's explicit formula for $S(t)$ (cf. p. 125 of [10]). Then the estimation of the last sum in $S$ is reduced to the estimates of the following type of sums.

$$
\begin{aligned}
& S_{1}=\sum_{p} e^{i \hbar(p) B}, \quad S_{2}=\sum_{p}\left|\sum_{r<y^{3}} \frac{a(r) r^{-i h(p)}}{\sqrt{r}}\right|^{2}, \\
& S_{3}=\sum_{p}\left|\sum_{r<y^{3 / 2}} \frac{a^{\prime}(r) r^{-i 2 h(p)}}{r}\right|^{2} \quad \text { and } \\
& S_{4}=\sum_{p}\left(\sigma_{y, h(p)}-1 / 2\right)^{2} \xi^{\sigma_{y, n(p)-1 / 2}^{2}},
\end{aligned}
$$

where $B \neq 0, r$ runs over the primes, $a(r) \ll \log r / \log y$ for $r<y^{3}, a^{\prime}(r)$ $\ll 1$ for $r<y^{3 / 2}, 1 \leqq \xi \leqq y^{2}, y^{3} \xi^{2} \ll(h(X))^{1 / 8}$ and $\sigma_{y, t}=1 / 2+2 \operatorname{Max}_{\rho}(\beta-1 / 2$, $2 / \log y$ ), $\rho$ running over the zeros $\beta+i \gamma$ of $\zeta(s)$ for which $|t-\gamma|$ $\leqq y^{3(\beta-1 / 2)} / \log y$. We remark that $h^{\prime \prime}(x) \sim-\Phi^{2}(h(x))(h(x))^{-1}(\log h(x))^{-3} A_{1}$ and $h^{\prime \prime \prime}(x) \sim \Phi^{3}(h(x))(h(x))^{-2}(\log h(x))^{-4} A_{2}$, where $A_{1}=A_{2}=1$ if $\Phi(x)$ satisfies 1) and $A_{1}=1-a_{1}-\left(2 b_{1}+b_{2}\right)(u(h(x)))^{-1}$ and $A_{2}=1-a_{1}+\left(3 b_{2}+b_{3}\right)$ $(u(h(x)))^{-1}$ if $\Phi(x)$ satisfies 2$)$. Consequently, the analysis in pp. 118122 of [1] gives us

$$
S_{1} \ll X^{o}\left(|B|^{1 / 6}+|B|^{-1 / 2}\right),
$$

where $\delta$ denotes some positive number $<1 . \quad S_{2}$ and $S_{3}$ can be estimated as in p. 123 of [1], and we get

$$
S_{2}, S_{3} \ll X / \varphi(k) \log X
$$

Now we estimate $S_{4}$.

$$
S_{4}=\frac{X}{\varphi(k)(\log X)(\log y)^{2}}+\sum_{p}^{\prime}\left(\sigma_{y, h(p)}-1 / 2\right)^{2} \xi^{\sigma_{y, n}(p)-1 / 2},
$$

where the dash indicates that we sum over all $p$ 's which satisfy $\sigma_{y, h(p)}$ $-1 / 2>4 / \log y, X / 2<p<X$ and $p \equiv a(\bmod k)$. The last sum is

$$
\begin{aligned}
& \ll \sum_{\rho}^{\prime \prime}(\beta-1 / 2)^{2} \xi^{2(\beta-1 / 2)}\left|\left\{X / 2<p<X ; p \equiv a(\bmod k),|h(p)-\gamma| \leqq \frac{y^{3(\beta-1 / 2)}}{\log y}\right\}\right| \\
& \ll \sum_{\rho}^{\prime \prime}(\beta-1 / 2)^{2}\left(y^{3} \xi^{2}\right)^{(\beta-1 / 2)}(\log X) /(k \Phi(X) \log y)+\sum_{\rho}^{\prime \prime}(\beta-1 / 2)^{2} \xi^{2(\beta-1 / 2)} \\
& \quad=S_{5}(\log X) /(k \Phi(X) \log y)+S_{6}
\end{aligned}
$$

say, where the double dash indicates that we sum over all $\rho=\beta+i \gamma$ for which $\beta>1 / 2+2 / \log y$ and $1 \ll \gamma \ll h(X)$.

$$
\begin{aligned}
S_{5}= & \sum_{\rho}^{\prime \prime}\left(\int_{1 / 2}^{1 / 2+2 / \log y}+\int_{1 / 2+2 / \log y}^{\infty}\right)\left(\left(\log \left(y^{3} \xi^{2}\right)(\sigma-1 / 2)^{2}\right.\right. \\
& \left.+2(\sigma-1 / 2))\left(y^{3} \xi^{2}\right)^{(\sigma-1 / 2)}\right) d \sigma \\
& \ll(\log y)^{-2}|\{\beta+i \gamma ; \beta>1 / 2+2 / \log y, 1 \ll \gamma \ll h(X)\}|
\end{aligned}
$$

$$
\begin{aligned}
& \quad+h(X) \log h(X) \int_{1 / 2+2 / \log y}^{\infty}\left(\left(\log \left(y^{3} \xi^{2}\right)(\sigma-1 / 2)^{2}\right.\right. \\
& \left.+2(\sigma-1 / 2)) h(X)^{-1 / 8(\sigma-1 / 2)}\right) d \sigma \\
& \ll h(X)(\log X)(\log y)^{-2} e^{-\Delta / 8}
\end{aligned}
$$

by Selberg's density estimate near $\sigma=1 / 2$ (cf. Theorem 1 of [10]). In the same way, we get the estimate of $S_{6}$ and get

$$
S_{4} \ll X\left(\varphi(k)(\log X)(\log y)^{2}\right)^{-1}+\left(\frac{\log X}{k \Phi(X) \log y}+1\right) \frac{h(X) e^{-\Delta / 8} \log X}{(\log y)^{2}} .
$$

Consequently, we get

$$
\sum_{p} S(h(p)), \quad \sum_{p} S(h(p+1)) \ll \frac{X \log \log X}{\varphi(k) \log X} .
$$

Hence we get

$$
S=\frac{1}{\varphi(k)} \int_{X / 2}^{X} \frac{L(h(u+1))-L(h(u))}{\log u} d u+O\left(\frac{X \log \log X}{\varphi(k) \log X}\right)
$$

This is $\gg X \Phi(X) /(\varphi(k) \log X)$ if $\Phi(X) \gg \log \log X$.
Q.E.D.

## References

[1] A. Fujii: A prime number theorem in the theory of the Riemann zeta function. J. reine angew. Math., 307/308, 113-129 (1979).
[2] -: On the uniformity of the distribution of the zeros of the Riemann zeta function. ibid., 302, 167-185 (1978).
[ 3 ] --: ditto. II. Comment. Math. Univ. St. Pauli, 31 (1), 99-113 (1982).
[4] -: Zeros, primes and rationals (to appear in Topics in Classical Number Theory, Coll. Math. Soc. Janos Bolyai, no. 34, Elsevier, North Holland).
[5] G. H. Hardy: Comments in Collected Papers (II). Clarendon Press, Oxford (1967).
[6] G. H. Hardy and J. E. Littlewood: Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes. Acta Math., 41, 119-196 (1918).
[7] E. Landau: Über die Nullstellen der $\zeta$-Funktion. Math. Ann., 71, 548-568 (1911).
[8] H. Rademacher: Collected Papers. vol. II, Cambridge, Mass., and London, MIT Press (1974).
[9] J. Schoissengeier: The connections between the zeros of the $\zeta$-function and sequences $(g(p)), p$ prime, mod 1. Mh. Math., 87, 21-52 (1979).
[10] A. Selberg: Contribution to the theory of the Riemann zeta function. Arch. Math. Naturvid., 48, 89-155 (1946).
[11] -: Contributions to the theory of Dirichlet $L$-functions. Skr. Utg. Norske Vid. Oslo, no. 3, 2-61 (1946).
[12] E. C. Titchmarsh: The theory of the Riemann zeta function. Oxford (1951).

