101. Multiplier Algebra of C^{*}-Envelope and the C^{*}-Envelope of a Multiplier Algebra*)

By Hang-Chin Lai
Institute of Mathematics, National Tsing Hua University
Hsinchu, Taiwan, Republic of China
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1982)

Abstract

Let A be a commutative Banach *-algebra with $C^{*}(A)$ as its enveloping C^{*}-algebra. Denote by $M(B)$ the multiplier algebra of a Banach algebra B. The relations between $M\left(C^{*}(A)\right)$ and $C^{*}(M(A))$ are studied in this note. Let $X=\mathscr{M}\left(C^{*}(A)\right)$ and $Y=\mathscr{M}\left(C^{*}(M(A))\right)$ be the maximal ideal spaces of $C^{*}(A)$ and $C^{*}(M(A))$ respectively. It is proved that if X is dense in Y then $C^{*}(M(A))$ can be isometrically embedded as a subalgebra in $M\left(C^{*}(A)\right.$). If X is not dense in Y, then it is characterized that there is a homomorphism of $C(Y)$ into $C(\beta(X))$ which is induced from the onto map of $\beta(X)$ to \tilde{X} where $\beta(X)$ is the Stone-Čech compactification of X and \tilde{X} is the weak closure of X in Y. 1. Introduction. Let A be a commutative Banach *-algebra with $C^{*}(A)$ as its enveloping C^{*}-algebra. Denote by $M(B)$ the multiplier algebra of some Banach algebra B, that is, a subalgebra of bounded linear operators $\mathcal{L}(B)$ of B which commute with algebra product. It is known that the multiplier algebra of a C^{*}-algebra is also a C^{*}-algebra. Thus one will know what relations can be established between $M\left(C^{*}(A)\right)$ and $C^{*}(M(A))$. For example

(i) whether $C^{*}(M(A)) \subset M\left(C^{*}(A)\right)$?
(ii) what condition can be $C^{*}(M(A)) \cong M\left(C^{*}(A)\right)$?

In general we can not say anything about (i) and (ii). But if the character space $X=\mathscr{M}\left(C^{*}(A)\right)$ is dense in the character space Y $=\mathcal{M}\left(C^{*}(M(A))\right)$, then certainly (i) holds. While the condition for (ii) is that A is a dense ideal of $C^{*}(A)$ containing a bounded approximate identity. If X is not dense in Y, then we find only that there is a homomorphism of $C(Y)$ into $C(\beta(X)$), which is induced from the onto map of $\beta(X)$ to \tilde{X} where $\beta(X)$ is the Stone-Čech compactification of X and \tilde{X} is the weak closure of X in Y.

As an example, if G is a locally compact abelian group with dual group \hat{G}, then \hat{G} is homeomorphic to the character space $L^{1}(G)$ as well as the character space of its enveloping C^{*}-algebra $C^{*}(G)$ (cf. Bourbaki [2, p. 113]), but \hat{G} is not dense in the character space Δ of the bounded

[^0]regular measure algebra $M(G)$ except G is compact (see Rudin [9, Corollary 5.3.5]). $\quad M(G)$ is the multiplier algebra of $L^{1}(G)$, thus \hat{G} is not dense in $Y=\mathscr{M}\left(C^{*}(M(G))\right)$.
2. Multiplier algebras and envelope C^{*}-algebras. Let B be a commutative C^{*}-algebra. It is known that the multiplier algebra $M(B)$ of B is also a C^{*}-algebra containing an identity, and the Gelfand transforms of B is isometrically isomorphic to $C_{0}(\mathcal{M}(B))$ where $\mathscr{M}(B)$ is the character space of B. Since the spectrum of a hermitian element h in B is real, it follows that any character of the commutative C^{*}-algebra B is hermitian, that is, the Gelfand transform of x^{*} for $x \in B$ is given by $\hat{x}^{*}=\overline{\hat{x}}$ as a function defined on $\mathcal{M}(B)$. For convenient, we state

Proposition 1 (Bourbaki [2, p. 72]). Suppose that A is a commutative Banach *-algebra, ρ is a canonical morphism of A into $C^{*}(A)$. Then ρ induces a homeomorphism $\tilde{\rho}$ which maps $\mathcal{M}\left(C^{*}(A)\right)$ onto a closed subset H of hermitian characters in $\mathscr{M}(A)$.

This proposition shows that $\mathscr{M}(A)$ and $\mathscr{M}\left(C^{*}(A)\right)$ are different character spaces in general. But in the case $A=L^{1}(G)$ for a locally compact abelian group G with dual group \hat{G}, the character space $\mathscr{M}\left(L^{1}(G)\right) \simeq \hat{G}$ and every character of $L^{1}(G)$ is hermitian, thus (see Bourbaki [2, p. 131])

$$
\mathscr{M}\left(C^{*}(G)\right) \simeq \mathscr{M}\left(L^{1}(G)\right) \simeq \hat{G} .
$$

Since the multiplier algebra $M(A)$ of a commutative Banach *algebra A is a commutative Banach *-algebra with identity, it follows that the enveloping C^{*}-algebra $C^{*}(M(A))$ possesses an identity, and so the character space Y of $C^{*}(M(A))$ is compact and the character space X of $C^{*}(A)$ is locally compact with respect to the Gelfand topology. If A has an approximate identity, then A is strictly dense in $M(A)$. If A has an identity then $A=M(A)$. Thus

$$
\left.C_{0}(X) \cong \widehat{C^{*}(A)} \subset \widehat{C^{*}(M(A)}\right) \cong C_{0}(Y)=C(Y)
$$

where \hat{B} denotes the Gelfand transforms of the algebra B.
We state our main results as follows.
Theorem 2. Let A be a commutative Banach *-algebra with a bounded approximate identity. Then
(i) $C^{*}(A)$ is an ideal of $C^{*}(M(A)) \cong C(Y)$.
(ii) There is a surjective mapping τ,

$$
\tau: \beta(X) \longrightarrow \tilde{X} \subset Y
$$

where $\beta(X)$ is the Stone-Čech compactification of X and \tilde{X} is the weak closure of X in Y.
(iii) The onto mapping τ of (ii) induces a homomorphism of $C(Y)$ into $C(\beta(X))$ such that the following diagram commutes

(iv) If X is dense in Y, then there exists an isometric embedding ρ of $C^{*}(M(A))$ into $M\left(C^{*}(A)\right)$ so that $C^{*}(M(A)) \subset M\left(C^{*}(A)\right)$.

Proof. (i) Since A has a bounded approximate identity, A is strictly dense in $M(A)$. It is known that
(1)

$$
C^{*}(A) \subset C^{*}(M(A)) \cong \widehat{C^{*}(M(A))} \cong C(Y)
$$

Now for any $b \in C^{*}(M(A))$ and $a \in C^{*}(A)$, there exist sequences $\left\{b_{n}\right\}$ in $M(A)$ and $\left\{a_{m}\right\}$ in A such that $b_{n} a_{m} \in A$ for all n, m and

$$
b a=\lim _{n \rightarrow \infty} b_{n} a=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} b_{n} a_{m} \in C^{*}(A) .
$$

Hence $C^{*}(A)$ is $C^{*}(M(A))$ module and $C^{*}(A)$ is an ideal of $C^{*}(M(A))$ $\cong C(Y)$.
(ii) Since we have seen that $C^{*}(A)$ is an ideal of $C^{*}(M(A))$, it follows from Lai [7, Theorem 2] that the maximal ideal space X of $C^{*}(A)$ is homeomorphic to an open subset of the maximal ideal space Y of $C^{*}(M(A))$. Since Y is compact and X is open in Y, the set K $=Y \backslash X$ is compact in Y. This implies that

$$
C^{*}(A)=\left\{a \in C^{*}(M(A)) ;\left.\hat{a}\right|_{K}=0\right\}
$$

where $\left.\hat{\alpha}\right|_{K}$ is the restriction of the Gelfand transform \hat{a} on K. Since $C^{*}(A) \cong \widehat{C}(A) \cong C_{0}(X)$, we have
(2)

$$
M\left(C^{*}(A)\right) \cong M\left(C_{0}(X)\right) \cong C^{b}(X)
$$

where $C^{b}(X)$ denotes the space of bounded continuous functions on X. Each function in $C^{b}(X)$ can be extended as a continuous function on the Stone-Čech compactification $\beta(X)$ of X. That is,

$$
C^{b}(X)=C(\beta(X))
$$

(see Dunford and Schwartz [3, IV 6.22 and 6.27]). Therefore by [3, 6.27], there is an onto mapping

$$
\tau: \beta(X) \longrightarrow \tilde{X}
$$

where \tilde{X} is the weak closure of X in Y.
(iii) By (ii), there is an onto mapping $\tau: \beta(X) \rightarrow \tilde{X}$, it induces a surjective homomorphism

$$
\tilde{\tau}: C(Y) \longrightarrow C(\tilde{X})
$$

and an injective embedding

$$
j: C(\tilde{X}) \longrightarrow C(\beta(X))
$$

such that $\rho=j \circ \tilde{\tau}$ is a homomorphism of $C(Y)$ into $C(\beta(X))$.
(iv) If X is dense in Y, then the onto homomorphism in (iii) becomes an isometric isomorphism. Therefore $\rho=j \circ \tilde{\tau}$ in (iii) is an isometric isomorphism of $C(Y)$ into $C(\beta(X))=C^{b}(X)$. It follows from (1) and (2) that

$$
\rho: C^{*}(M(A)) \cong C(Y) \longrightarrow M\left(C^{*}(A)\right) \cong C^{b}(X)
$$

is an isometric injection, that is

$$
C^{*}(M(A)) \subset M\left(C^{*}(A)\right)
$$

3. Isometric isomorphism of C^{*}-algebras. It is known that if a Banach algebra A with a bounded approximate identity is continuously embedded in another Banach algebra B as a dense ideal, then $A=B$ (cf. Lai [7, Proposition 5 and the remark in p. 233]). This reduces that any proper Segal algebra has no bounded approximate identity (cf. also Feichtinger [4, Corollary 2.3]). Hence if a commutative Banach *-algebra A with a bounded approximate identity is an ideal of its enveloping C^{*}-algebra $C^{*}(A)=B$, then A itself is a C^{*}-algebra, it follows that $A=C^{*}(A)$ as well as $C^{*}(M(A))=M(A)$ since $M(A)$ is a C^{*}-algebra with identity provided A is a C^{*}-algebra. It is remarkable that the maximal ideal space X of $C^{*}(A)=A$ is dense in the maximal ideal space Y of $C^{*}(M(A))=M(A)$ with respect to the hull kernel topology if A is semisimple (see Lai [7, §4]). Hence by Theorem 2 (iv), we have

$$
M(A)=C^{*}(M(A)) \subset M\left(C^{*}(A)\right)=M(A) \quad \text { so that } \quad C^{*}(M(A))=M\left(C^{*}(A)\right)
$$

Hence we have the following
Theorem 3. Let A be a commutative semisimple Banach *-algebra with an approximate identity. If A is an ideal of $C^{*}(A)$ then

$$
C^{*}(M(A))=M\left(C^{*}(A)\right)
$$

By the above discussion, we see that for a locally compact abelian group G, by Theorem 3, we have

Corollary 4. Let G be a locally compact abelian group. Then, $L^{1}(G)$ is an ideal of its enveloping C^{*}-algebra $C^{*}(G)$ if and only if G is finite.

References

[1] C. A. Akemann, G. K. Pedersen, and J. Tomiyama: Multipliers of C^{*}-algebras. J. Funct. Anal., 13, 277-301 (1973).
[2] N. Bourbaki: Eléments de Mathématiques, Théories Spectrales Chaps. 1, 2. Actualities Sci. Ind., 1332 pp., Hermann (1967).
[3] N. Dunford and J. T. Schwartz: Linear Operators I. Interscience Publishèrs Inc., N.Y. (1958).
[4] H. G. Feichtinger: Results on Banach ideals and spaces of multipliers. Math. Scand., 41, 315-324 (1977).
[5] H. C. Lai: On the multipliers of $A^{p}(G)$-algebras. Tohoku Math. J., 23, 641-662 (1971).
[6] -: Multipliers of a Banach algebra in the second conjugate algebra as an idealizer. ibid., 26, 431-452 (1974).
[7] -: Banach algebras which are ideals in a Banach algebra. Bull. Inst. Math., Acad. Sinica, 3, 227-233 (1975).
[8] H. C. Lai and I. S. Chen: Harmonic analysis on the Fourier algebras A ${ }_{1 p}$, (G). J. Austral. Math. Soc., 30, 438-452 (1981).
[9] W. Rudin: Fourier Analysis on Groups. Interscience, N.Y. (1962).

[^0]: *) With partial support from NSC Taiwan, Republic of China.

