97. Iterating Holomorphic Self-Mappings of the Hilbert Ball

By Kazimierz Goebel*) and Simeon Reich**)
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1982)

Let B denote the open unit ball of a complex Hilbert space H. It has been recently shown [5] that several ideas from the theory of nonexpansive mappings in Banach spaces can be used to yield new results concerning holomorphic self-mappings of B. Continuing in this direction, and motivated by the concept of firmly nonexpansive mappings, we introduce in this note the class of firmly holomorphic self-mappings of B (see the definition below). We show that if a firmly holomorphic $F: B \rightarrow B$ has a fixed point, then its iterates $\left\{F^{n} x\right\}$ converge weakly to a fixed point of F for each x in B (Theorem 1). If F is fixed point free, then all its iterates converge strongly to a point on the boundary of B which is independent of x (Theorem 2). We also show how to associate with each holomorphic self-mapping of B family of firmly holomorphic mappings with the same fixed point sets (Theorem 3). We conclude with a discussion of some of the properties of these families (see, for example, Theorem 4).

Recall that a mapping T in a Banach space is said to be firmly nonexpansive [1, 2] if $|T x-T y| \leq|r(x-y)+(1-r)(T x-T y)|$ for all x, y in the domain of T and $r>0$. In this case $|(1-t)(x-y)+t(T x-T y)|$ is a (convex) decreasing function for $0 \leq t \leq 1$. Let $\rho: B \times B \rightarrow[0, \infty)$ be the hyperbolic metric on B [6]. Since any holomorphic self-mapping of B is nonexpansive with respect to ρ, we shall say that a holomorphic mapping $F: B \rightarrow B$ is firmly holomorphic if for each x and y in B, the function

$$
\rho((1-t) x+t F x,(1-t) y+t F y)
$$

is decreasing for $0 \leq t \leq 1$.
Let C be a closed convex subset of a Banach space E, and let $T: C \rightarrow C$ be a firmly nonexpansive mapping. Assume that both E and its dual E^{*} are uniformly convex. It is known that if T has a fixed point, then for each x in $C,\left\{T^{n} x\right\}$ converges weakly (but not necessarily strongly) to a fixed point of T. If T is fixed point free, then $\lim _{n \rightarrow \infty}\left|T^{n} x\right|=\infty$ for all x in C [3].

[^0]In order to prove an analog of the first result for firmly holomorphic mappings we shall need the following fact. Since ρ-balls are ellipsoids, it is a consequence of the parallelogram law.

Lemma 1. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences in B. Suppose that for some point $y \in B, \lim _{n \rightarrow \infty} \rho\left(x_{n}, y\right)=\lim _{n \rightarrow \infty} \rho\left(z_{n}, y\right)=\lim _{n \rightarrow \infty} \rho\left(\left(x_{n}\right.\right.$ $\left.\left.+z_{n}\right) / 2, y\right)=d . \quad$ Then $\lim _{n \rightarrow \infty} \rho\left(x_{n}, z_{n}\right)=0$.

Theorem 1. Let B denote the open unit ball of a complex Hilbert space. If a firmly holomorphic mapping $F: B \rightarrow B$ has a fixed point, then for each x in B, the sequence of iterates $\left\{F^{n} x\right\}$ converges weakly to a fixed point of F.

Proof. Let y be a fixed point of F and let $x_{n}=F^{n} x$. Since F is firmly holomorphic, we can apply Lemma 1 to $\left\{x_{n}\right\}$ and $\left\{F x_{n}\right\}$ to conclude that $\lim _{n \rightarrow \infty} \rho\left(x_{n}, F x_{n}\right)=0$. This implies, in turn, that $\left\{x_{n}\right\}$ converges weakly to its asymptotic center.

We do not know if the convergence established in Theorem 1 is actually strong. As mentioned above, this is not true in general in the firmly nonexpansive case. It would also be of interest to determine all the holomorphic self-mappings of B for which Theorem 1 holds.

In order to determine the behavior of a fixed point free $F: B \rightarrow B$, we recall [4] that to each holomorphic $T: B \rightarrow B$ which is fixed point free we can associate a unique point $e=e(T)$ on the boundary of B with the following property : there is a family of ellipsoids which are invariant under T and whose norm-closures intersect the unit sphere at e. Each such ellipsoid is a set of the form $\left\{x \in B: \phi_{e}(x)<a\right\}$, where $\phi_{e}(x)=|1-(x, e)|^{2} /\left(1-|x|^{2}\right)$ and $0<a<\infty$.

Lemma 2. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences in B. Suppose that $\lim _{n \rightarrow \infty} \phi_{e}\left(x_{n}\right)=\lim _{n \rightarrow \infty} \phi_{e}\left(z_{n}\right)=\lim _{n \rightarrow \infty} \phi_{e}\left(\left(x_{n}+z_{n}\right) / 2\right)$. Then $\lim _{n \rightarrow \infty} \mid x_{n}$ $-z_{n} \mid=0$.

Theorem 2. Let F be a firmly holomorphic self-mapping of B. If F is fixed point free, then for each x in B, the sequence of iterates $\left\{F^{n} x\right\}$ converges strongly to $e(F)$, a point on the boundary of B.

Proof. Let $x_{n}=F^{n} x$. Since it can be shown that $\phi_{e}((1-t) x+t F x)$ is decreasing for $0 \leq t \leq 1$, we can use Lemma 2 to deduce that $\lim _{n \rightarrow \infty}\left|x_{n}-F x_{n}\right|=0$. Since F is fixed point free, it follows that $\lim _{n \rightarrow \infty}\left|x_{n}\right|=1$. Since $\phi_{e}\left(x_{n}\right) \leq \phi_{e}(x)$ for all $n, \lim _{n \rightarrow \infty}\left(x_{n}, e\right)=1$ and the result follows.

If T is a nonexpansive self-mapping of a closed convex subset C of a Banach space, then for each $0 \leq k<1$ there is a firmly nonexpansive mapping $g_{k}: C \rightarrow C$ that satisfies $g_{k}(x)=(1-k) x+k T g_{k}(x)$ for all $x \in C$.

Using the same idea we are now going to associate with each holomorphic mapping $T: B \rightarrow B$ a family of firmly holomorphic selfmappings of B with the same fixed point sets. To this end, let $0 \leq k$
<1 and fix a point w in B. Define a sequence of holomorphic mappings $f_{n}: B \rightarrow B$ by $f_{1}(x)=(1-k) x+k T w, f_{n+1}(x)=(1-k) x+k T\left(f_{n}(x)\right)$, $n \geq 1$. For each fixed $x \in B$, consider the mapping $S: B \rightarrow B$ defined by $S z=(1-k) x+k T z$. Since $|S z| \leq(1-k)|x|+k<1$ for all z in $B, \rho\left(S z_{1}, S z_{2}\right)$ $\leq A \rho\left(z_{1}, z_{2}\right)$ for some $A<1$. Thus S has a unique fixed point, which we denote by $F(k, T) x$, and $F(k, T) x=$ the strong $\lim _{n \rightarrow \infty} S^{n} w$. In other words, $F(k, T) x=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in B$. Since the sequence $\left\{f_{n}(x)\right\}$ is uniformly bounded, $F(k, T)$ is seen to be a holomorphic selfmapping of $B[7, \mathrm{p} .113]$. It is clear that T and $F(k, t)$ have the same fixed point sets.

Theorem 3. Let T be a holomorphic self-mapping of B. For each $0 \leq k<1$ and $x \in B$ define $F x=F(k, T) x$ by $F x=(1-k) x+k T F x$. Then $F: B \rightarrow B$ is firmly holomorphic.

Proof. We already know that F is holomorphic. Now let $0 \leq s$ $<t \leq 1, \quad u=(1-s) x+s F x, \quad v=(1-t) x+t F x, \quad w=(1-s) y+s F y$, and z $=(1-t) y+t F y$. A computation shows that $F x=F(k, T) x=F(p, T) v$, where $p=k(1-t) /(1-k t)$. We also have $v=(1-q) u+q F x$ and z $=(1-q) w+q F y$, with $q=(t-s) /(1-s)$. Therefore, $v=G u$ and $z=G w$, where $G=F(q, F(p, T))$. Since G is holomorphic, we see that $\rho(v, z)$ $=\rho(G u, G w) \leq \rho(u, w)$, as required.

Consider once again the firmly nonexpansive mappings g_{k} mentioned above. It is known [9] that if T has a fixed point, then the strong $\lim _{k \rightarrow 1} g_{k}(x)=P x$ exists for each x in $C . \quad P$ is the unique sunny nonexpansive retraction of C onto the fixed point set of T. In Hilbert space, this retraction coincides with the nearest point projection. If T is fixed point free, then $\lim _{k \rightarrow 1}\left|g_{k}(x)\right|=\infty$ for all x in C [8].

Theorem 4. Let T be a holomorphic self-mapping of B. For each $0 \leq k<1$ and $x \in B$ define $F x=F(k, T) x$ by $F x=(1-k) x+k T F x$. If T is fixed point free, then the strong $\lim _{k \rightarrow 1} F(k, T) x=e(T)$, a point on the boundary of B.

The proof of Theorem 4 resembles that of Theorem 2.
We conjecture that if T has a fixed point, then for each x in B the strong $\lim _{k \rightarrow 1} F(k, T) x=R x$, where R is the nearest point projection (with respect to ρ) from B onto the fixed point set of T. This has been shown to be true in several special cases. Also, R is indeed firmly holomorphic.

It is expected that detailed proofs of the results announced here, as well as other related results, will appear elsewhere.

References

[1] F. E. Browder: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z., 100, 201-225 (1967).
[2] R. E. Bruck: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math., 47, 341-355 (1973).
[3] R. E. Bruck and S. Reich: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math., 3, 459-470 (1977).
[4] K. Goebel: Fixed points and invariant domains of holomorphic mappings of the Hilbert ball (preprint).
[5] K. Goebel, T. Sekowski, and A. Stachura: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis, 4, 1011-1021 (1980).
[6] K. T. Hahn: Geometry on the unit ball of a complex Hilbert space. Canad. J. Math., 30, 22-31 (1978).
[7] E. Hille and R. S. Phillips: Functional Analysis and Semigroups. AMS, Providence, Rhode Island (1957).
[8] S. Reich: Asymptotic behavior of resolvents in Banach spaces. Atti Accad. Naz. Lincei, 67, 27-30 (1979).
[9] --: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl., 75, 287-292 (1980).

[^0]: *) Institute of Mathematics, Maria Curie-Sklodowska University 20-031 Lublin, Poland.
 **) Department of Mathematics, The University of Southern California, Los Angeles, California 90007.

