93. On the Ideal Class Groups of Some Cyclotomic Fields

By Koichi TATEYAMA

Department of Mathematics, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1982)

1. Introduction. Let K_m be the cyclotomic field of *m*-th roots of unity, and K_m^+ its maximal real subfield. Let C(m), $C^+(m)$ denote the ideal class groups of K_m , K_m^+ respectively. Let j denote the automorphism of K_m , mapping each element in K_m to its complex-conju-Let $C^{-}(m)$ denote the kernel of the norm map 1+j: C(m)gate. $\rightarrow C^+(m).$

In a paper of 1853, Kummer proved that $C^{-}(p)$ is cyclic for every prime p < 100 and $p \neq 29$, 41. Furthermore, $C^{-}(29)$ and $C^{-}(41)$ are abelian groups of type (2, 2, 2) and (11, 11) respectively (see [2], [5]).

Recently, Gerth [1] determined the structure of C(68) by using the ambiguous class group of C(68). Now we determine the structure of C(m) when the order of C(m) is smaller than 10⁴, as well as the structure of $C^{-}(p)$ when p is a prime number smaller than 227 except for seven cases. Our results are shown in Tables I and II. They are obtained using the computational results due to Masley and Schrutka ([6]–[9]).

Notations. h_m and h_m^- denote the orders of C(m) and $C^-(m)$ respectively. For any algebraic number field L, we denote by C_L the ideal class group of L, and h_L the order of C_L (i.e. the class number of L). When L is an imaginary abelian number field, C_{L} , h_{L} are defined as obvious generalization of $C^{-}(m)$, h_{m}^{-} .

2. The structure of C(m).

Table I ($h_m < 10^4$)			
m	h_{m}	type	
29	2^{3}	(2, 2, 2)	(Kummer)
31	3^2	(32)	(Kummer)
41	11 ²	(11, 11)	(Kummer)
57	3^{2}	(3^2)	
65	2^{6}	(?)	
68	2^{3}	(2^3)	(Gerth)
77	$2^{s} \cdot 5$	(?)	
87	$2^{\circ} \cdot 3$	(?)	
93	$3^2 \cdot 5 \cdot 151$	$(3^2, 5, 151)$	
96	3^2	(3, 3)	

Tał	le '	I (h	<1	0^4

99	$3\cdot 31^2$	(3, 31, 31)	
104	$3^{3} \cdot 13$	(3, 3, 3, 13)	
112	$2^2 \cdot 3^2 \cdot 13$	$(2^2, 3, 3, 13)$	
120	2^{2}	(2^2)	
144	$3 \cdot 13^{2}$	(3, 13, 13)	
156	$2^2 \cdot 3 \cdot 13$	(?)	
168	$2^2 \cdot 3 \cdot 7$	$(2^2, 3, 7)$	
180	$3 \cdot 5^2$	(3, 5, 5)	
240	$2^8 \cdot 5^2$	(?, 5, 5)	
		NAME OF TAXABLE ADDRESS	

The proof depends on the following lemmas.

Lemma 1. Let k be an algebraic number field and K be an extension of k of degree 2. Let a(K/k) denote the order of the ambiguous class group of K over k. If h_k is odd, then $a(K/k)=2^r \cdot n$, (n, 2)=1, where we denote by r the rank of the 2-Sylow subgroup of C_{κ} (see [1]).

Lemma 2. Suppose that K/k is a cyclic extension of degree n. Let p be a prime such that $p \nmid nh_L$, for any field L with $k \subset L \subseteq K$. Then the p-rank of C_K is a multiple of the order of p modulo n (Masley [7]).

Lemma 3. Let p be an odd prime, and K/k an abelian extension of type (2, 2). Let K_i and S_i (i=1, 2, 3) denote the intermediate fields of K/k and the p-Sylow subgroup of C_{K_i} respectively. If $S_3=1$, then the p-Sylow subgroup of C_K is isomorphic to $S_1 \times S_2$.

Lemma 4. Let p be a prime number and K/k be a cyclic extension of degree p, and S_{κ} the p-Sylow subgroup of C_{κ} . We set $S_{\kappa} = N_{\kappa/\kappa}S_{\kappa}$ and suppose that the canonical homomorphism $S_{\kappa} \to S_{\kappa}$ is injective. If $(S_{\kappa}: S_{\kappa}) = p^{a}$ and a < p-1, then $S_{\kappa} = S_{\kappa}^{p}$.

Remark. The injectivity of $S_k \rightarrow S_K$ is well-known in our cases (see [4]).

Table II (71 $\leq p \leq 211$)			
p	square factors of a	h_p^- type	
71	7^2	(7 ²)	(Kummer)
101	5^{5}	$(5^2, 5^3)$	
113	$2^{\scriptscriptstyle 3}$	(2, 2, 2)	
131	$3^3 \cdot 5^2$	$(3, 3, 3, 5^2)$	
137	17^{2}	(17^2)	
139	$3^2 \cdot 47^2 \cdot 277^2$	$(3^2, ?, 277, 277)$	
149	3^2	(3, 3)	
151	11^{2}	(11, 11)	
157	$13^2 \cdot 157^2$	$(13^2, 157, 157)$	(Iwasawa-Sims)
163	2^{2}	(2, 2)	
9 1 7	$egin{array}{c} 3^2 \ 11^2 \ 13^2 \cdot 157^2 \end{array}$	(3, 3) (11, 11) $(13^2, 157, 157)$	(Iwasawa-Sin

3. The structure of $C^{-}(p)$.

197	2^{3}	(2, 2, 2)
199	3^4	(34)
211	$3^2 \cdot 7^2 \cdot 281^2$	$(3^2, 7^2, 281, 281)$

To determine the structure of $C^{-}(p)$, we must modify Lemmas 2 and 4 into Lemmas 5 and 6.

Lemma 5. Suppose that K/k is a cyclic extension of degree n, and that k, K are both imaginary abelian fields. Let p be an odd prime such that $p \nmid nh_L^-$ for any field with $k \subset L \subseteq K$. Then the p-rank of $C_{\overline{K}}$ is a multiple of the order of p modulo n.

Lemma 6. Let p be a prime number, K/k be a cyclic extension of degree p, and k, K be imaginary abelian. We denote by S_{κ} the p-Sylow subgroup of $C_{\bar{\kappa}}$, and $S_{\kappa} = N_{\kappa/\kappa}S_{\kappa}$. We assume that the canonical homomorphism $S_{\kappa} \rightarrow S_{\kappa}$ is injective. If $(S_{\kappa}:S_{\kappa}) = p^{a}$ and a < p-1, then $S_{\kappa} = S_{\kappa}^{p}$.

The following lemma is trivial, but useful.

Lemma 7. Let K be an extension field over k, and p be a prime number such that $p \nmid [K:k]$. We denote by S_{κ} the p-Sylow subgroup of C_{κ} , and $S_{\kappa} = N_{\kappa/\kappa}S_{\kappa}$. Then S_{κ} is a direct summand of S_{κ} .

References

- F. Gerth: The ideal class groups of two cyclotomic fields. Proc. Amer. Math. Soc., 78(3), 321-322 (1980).
- [2] K. Iwasawa: A note on ideal class groups. Nagoya Math. J., 27-1, 239-247 (1966).
- [3] K. Iwasawa and C. C. Sims: Computation of invariants in the theory of cyclotomic fields. J. Math. Soc. Japan, 18(1), 86-96 (1966).
- [4] Y. Kida: L-extension of CM-fields and cyclotomic invariants. J. Number Theory, 12(4), 519-528 (1980).
- [5] E. Kummer: Über die Irregularitat der Determinaten. Monatsber. Akad. d. Wissensch., Berlin, pp. 194–200 (1853).
- [6] J. M. Masley: Solution of small class number problems for cyclotomic fields. Compositio Math., 33(2), 179-186 (1976).
- [7] —: Class numbers of real cyclic number fields with small conductors. ibid., 37(3), 297-319 (1978).
- [8] ——: Cyclotomic fields with class number less than one million (preprint).
- [9] G. Schrutka v. Rechtenstamm: Tabelle der (relative-) Klassenzahlen von Kreiskörpern. Abh. Deutsche Akad. Wiss. Berlin, Math. Nat., nr. 2 (1964).

No. 7]