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1. Introduction. We are concerned with the problem to con-
struct infinitely many number fields of a given degree m and with a
given number of real (resp. complex)absolute values r (resp. r), for
which the ideal class group contains a given finite abelian group A as
a subgroup. Ishida [4] (resp. [5]) solved this problem when m is any
odd prime number, r 1 (resp. r 3) and A is an elementary 2-abelian
group with rank m-1 (resp. A is any elementary m-abelian group).
But when r=0, no results are known to the author, except when m
is small, i.e. when m=2 and A is cyclic (by Yamamoto [9] and
Weinberger [8]) and when m-3 and A is cyclic (by Uchida [7] and
Ichimura [3]).

In this paper, we consider the problem in the case r.=0 and A is
an elementary 2-abelian group. When m is even, this can be solved
for any such A by composing a totally real number field of degree m/2
with a real quadratic field with a large genus number. When m is
odd, we use the method of [4] to prove the following

Theorem. For any odd natural number m (>1), there exist
infinitely many totally real number fields of degree m, for which the
ideal class group contains an elementary 2-abelian group with rank
(m- 1)/2 as a subgroup.

Our method of the proof is sketched as follows. Let f(X)
=X l-[3 (X--A3-C be an irreducible polynomial, where A, and C
are rational integers satisfying some congruence and other conditions.
Let t be root of f(X), and set K= Q(a). Then, K is totally real and
K(/-A,, /-A,..., JO-A_,) contains an unramified abelian ex-
tension over K of type (2,..., 2) with rank (m-1)/2.

Remark 1. Recently, Azuhata and Ichimura [1] solved our prob-
lem for any r>=0, r>0 and any abelian group A with rank =<_r. As
in [1], we can solve the problem for any odd rational integer r>=l,
any rational integer r>=0, and an elementary 2-abelian group A with
rank 2r+(r- 1) /2.

2. Proof of the theorem. Let m (>1) be a given odd number.
We consider a polynomial of the form f(X)=X I-[ (X--A3-C for
rational integers A, and C. Let p, (1<_i_<m-1) be prime numbers
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congruent to 1 modulo 4 such that p2m and p=/=p for i=/=]. Let v
be a natural number greater than 2m. Take rational integers A and
C so that they satisfy the following conditions (1)-(9).

(1) AA (mod p), A0 (mod p), (1i, ], k<=m-1, i=/=]).
(2) A is quadratic non-residue mod p, but A (]=/=i) is quadratic

residue mod p, (l_<i_<m-1).
(3) A--0 (mod2), (li<_m-1).
(4) C--0 (modp), (l_i_<_m-1).
(5) C_---- 1 (mod 2v).
(6) (A, C)=(A-A, C)=I, (1__<__i, ]m-1, i=]).
(7) OAIA. A_.
(8) f(X)=X I-[ (X-A)-C is irreducible over Q.
(9) As compared with ICI, IAI and [A-A] (1i, ]<=m-l, i=/=])

are so large that all roots of f(x) are real.
These A and C do exist by the following

Lemma 1 (Hilbert Irreducibility Theorem, cf. Hilbert [2]). Let
G(X, X, Y, .., Y,) e Z[X, X, Y, .., Y] be an irreducible
polynomial. Let a, ..., a be rational integers and m, ..., m natural
numbers. Then there exist infinitely many rational integers y, ..., y
such that

(i) y--a (mod m), (l_<_i_<m-1),
(ii) G(X, ., X, y, y) is irreducible.
For rational integers A and C chosen as above, let 0 be a root of

f(X) and set K= Q(O).
Proposition. (i) The number field K is totally real. (ii) The prime

numbers p (lim--1) split completely in K. (iii) K(/-(O--A)(O-A),
/(O--A)(O--A), ..., /(O--A_)(O--A_)) is an unramified abelian ex-
tension over K of type (2,..., 2) with rank (m-1)/2.

This proposition ollows rom the ollowing five lemmas.

Lemma 2. For each i (1im--1), p, splits completely in K and
,= (t, p,) is a prime ideal of K of degree one.

Proof. By (4), f(X)--X [[ .2 (X-A) (rood p). From (1), this
is a decomposition into distinct linear actors, which proves our as-
sertion.

Lemma :}. [0--A], ..., [t--A_] are independent in K*/K*,
where K* denotes the multiplicative group of K and [a] denotes the
element of K*/K* represented by an element of K*.

Proof. Assume that (O--A)u’.. .(t--A_,)u- e K* or some ra-
tional integers u. Consider this relation modulo ,. Then, by (2),
we have u,--0 (mod2). Therefore, [t--A], ., [t--A,_] are inde-
pendent in K* /K*.

Lemma 4. Any prime ideal of K relatively prime to 2 is un-
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ramified in the quadratic extension K(/:-A-).
Proof. First we claim that t, t-A, t-A., ..., t-A_ are pair-

wise relatively prime. For example, assume that there exists a prime
ideal such that ](t,t-A). Then, by the relation t [I:I(8-A)
=C, we get ]A and ]C. This contradicts (6). Therefore, and
6--A are relatively prime. Similarly, 6-A and O-A are relatively
prime or i]. Therefore, by the relation j: (-A) C, there
exists an ideal o K such that =(8-A). This proves our asser-
tion.

Lemma 5. The prime number 2 is unramified in K(J-A)/Q.
Proof. Obviously, K(J-A)=Q(-A). The minimal poly-

nomial of A over Q is h(X)=(X+A) -(X+(A-A))-C.
By (3) and (5), we have h(X)--X-I (rood 2). Since v>2m, we see,
from Krasner’s lemma (ef. Lang [6], Chap. 2), that the splitting field
of h(X) over Q is Q(- ). Since m is odd, Q(41 ) is unramified
over Q. This proves our assertion.

Lemma 6. The number field K is totally real. (O-A,)(6-A),
(-A,)(8--A),..., (6-A_z)(-A_) are totally positive elements of
K.

Proof. By (9), all roots of f(X) are real. Let , ’),, ..., -)
be the roots of f(X). We may assume that
Since the graph o Y=f(X) is obtained by translating that o Y
X (X-A) downward along the Y-axis, we see, rom (7), that
0()AIAe(e)()A.

Therefore, O-A and O-A+ have the same signatures, or odd
number k with lgkgm-2. This proves our assertion.

Finally, rom the proposition, by taking various p, A and C, we
obtain infinitely many fields K satisfying the assertions of our Theo-
rem. This completes the proo o our Theorem.

Remark 2. Let r and r be an odd natural number and a non-
negative rational integer respectively. Set m=r+2r. As in [1], it

is possible to choose A and C so that they satisfy the condition (9’)
instead of (9).

(9’) As compared with A (lgi2r-l), C is so large, and as
compared with [C[, A and [A-A (2rk, m-1, kg) are so large
that f(X) has r real and 2r imaginary roots.

Then, by the same argument as above, we see that the field
K(J, O-A,..., --A_,

(O--Ar+)(O--A+), ..., (--A_)(O-A_))
is an unramified abelian extension over K o type (2, 2, ..., 2)with
rank 2r+(r--l)/2.
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