92. On 2-Rank of the Ideal Class Groups of Totally Real Number Fields

By Humio Ichimura
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. a., Sept. 13, 1982)

§ 1. Introduction. We are concerned with the problem to construct infinitely many number fields of a given degree m and with a given number of real (resp. complex) absolute values r_{1} (resp. r_{2}), for which the ideal class group contains a given finite abelian group A as a subgroup. Ishida [4] (resp. [5]) solved this problem when m is any odd prime number, $r_{1}=1$ (resp. $r_{1}=3$) and A is an elementary 2-abelian group with rank $m-1$ (resp. A is any elementary m-abelian group). But when $r_{2}=0$, no results are known to the author, except when m is small, i.e. when $m=2$ and A is cyclic (by Yamamoto [9] and Weinberger [8]) and when $m=3$ and A is cyclic (by Uchida [7] and Ichimura [3]).

In this paper, we consider the problem in the case $r_{2}=0$ and A is an elementary 2 -abelian group. When m is even, this can be solved for any such A by composing a totally real number field of degree $m / 2$ with a real quadratic field with a large genus number. When m is odd, we use the method of [4] to prove the following

Theorem. For any odd natural number $m(>1)$, there exist infinitely many totally real number fields of degree m, for which the ideal class group contains an elementary 2-abelian group with rank ($m-1$)/2 as a subgroup.

Our method of the proof is sketched as follows. Let $f(X)$ $=X \prod_{i=1}^{m-1}\left(X-A_{i}\right)-C^{2}$ be an irreducible polynomial, where A_{i} and C are rational integers satisfying some congruence and other conditions. Let θ be a root of $f(X)$, and set $K=\boldsymbol{Q}(\theta)$. Then, K is totally real and $K\left(\sqrt{\theta-A_{1}}, \sqrt{\theta-A_{2}}, \cdots, \sqrt{\theta-A_{m-1}}\right)$ contains an unramified abelian extension over K of type ($2, \cdots, 2$) with rank ($m-1$)/2.

Remark 1. Recently, Azuhata and Ichimura [1] solved our problem for any $r_{1} \geqq 0, r_{2}>0$ and any abelian group A with $r a n k \leqq r_{2}$. As in [1], we can solve the problem for any odd rational integer $r_{1} \geqq 1$, any rational integer $r_{2} \geqq 0$, and an elementary 2 -abelian group A with rank $2 r_{2}+\left(r_{1}-1\right) / 2$.
§ 2. Proof of the theorem. Let $m(>1)$ be a given odd number. We consider a polynomial of the form $f(X)=X \prod_{i=1}^{m-1}\left(X-\mathbf{A}_{i}\right)-C^{2}$ for rational integers A_{i} and C. Let $p_{i}(1 \leqq i \leqq m-1)$ be prime numbers
congruent to 1 modulo 4 such that $p_{i}>2 m$ and $p_{i} \neq p_{j}$ for $i \neq j$. Let v be a natural number greater than $2 m$. Take rational integers A_{i} and C so that they satisfy the following conditions (1)-(9).
(1) $\quad A_{i} \not \equiv A_{j}\left(\bmod p_{k}\right), A_{i} \not \equiv 0\left(\bmod p_{k}\right),(1 \leqq i, j, k \leqq m-1, i \neq j)$.
(2) A_{i} is quadratic non-residue $\bmod p_{i}$, but $A_{j}(j \neq i)$ is quadratic residue $\bmod p_{i},(1 \leqq i \leqq m-1)$.
(3) $A_{i} \equiv 0\left(\bmod 2^{v}\right),(1 \leqq i \leqq m-1)$.
(4) $C \equiv 0\left(\bmod p_{i}\right),(1 \leqq i \leqq m-1)$.
(5) $C \equiv 1\left(\bmod 2^{v}\right)$.
(6) $\left(A_{i}, C\right)=\left(A_{i}-A_{j}, C\right)=1,(1 \leqq i, j \leqq m-1, i \neq j)$.
(7) $0<A_{1}<A_{2}<\cdots<A_{m-1}$.
(8) $f(X)=X \prod_{i=1}^{m-1}\left(X-A_{i}\right)-C^{2}$ is irreducible over \boldsymbol{Q}.
(9) As compared with $|C|,\left|A_{i}\right|$ and $\left|A_{i}-A_{j}\right|(1 \leqq i, j \leqq m-1, i \neq j)$ are so large that all roots of $f(x)$ are real.

These A_{i} and C do exist by the following
Lemma 1 (Hilbert Irreducibility Theorem, cf. Hilbert [2]). Let $G\left(X_{1}, \cdots, X_{r}, Y_{1}, \cdots, Y_{s}\right) \in Z\left[X_{1}, \cdots, X_{r}, Y_{1}, \cdots, Y_{s}\right]$ be an irreducible polynomial. Let a_{1}, \cdots, a_{s} be rational integers and m_{1}, \cdots, m_{s} natural numbers. Then there exist infinitely many rational integers y_{1}, \cdots, y_{s} such that
(i) $\quad y_{i} \equiv a_{i}\left(\bmod m_{i}\right),(1 \leqq i \leqq m-1)$,
(ii) $G\left(X_{1}, \cdots, X_{r}, y_{1}, \cdots, y_{s}\right)$ is irreducible.

For rational integers A_{i} and C chosen as above, let θ be a root of $f(X)$ and set $K=\boldsymbol{Q}(\theta)$.

Proposition. (i) The number field K is totally real. (ii) The prime numbers $p_{i}(1 \leqq i \leqq m-1)$ split completely in K. (iii) $K\left(\sqrt{\left(\theta-A_{1}\right)\left(\theta-A_{2}\right.}\right)$, $\left.\sqrt{\left(\theta-A_{3}\right)\left(\theta-A_{4}\right)}, \cdots, \sqrt{\left(\theta-A_{m-2}\right)\left(\theta-A_{m-1}\right)}\right)$ is an unramified abelian extension over K of type $(2, \cdots, 2)$ with rank $(m-1) / 2$.

This proposition follows from the following five lemmas.
Lemma 2. For each $i(1 \leqq i \leqq m-1), p_{i}$ splits completely in K and $\mathfrak{B}_{i}=\left(\theta, p_{i}\right)$ is a prime ideal of K of degree one.

Proof. By (4), $f(X) \equiv X \prod_{j=1}^{m-1}\left(X-A_{j}\right)\left(\bmod p_{i}\right)$. From (1), this is a decomposition into distinct linear factors, which proves our assertion.

Lemma 3. $\left[\theta-A_{1}\right], \cdots,\left[\theta-A_{m-1}\right]$ are independent in $K^{*} / K^{* 2}$, where K^{*} denotes the multiplicative group of K and $[\alpha]$ denotes the element of $K^{*} / K^{* 2}$ represented by an element α of K^{*}.

Proof. Assume that $\left(\theta-A_{1}\right)^{u_{1}} \cdots\left(\theta-A_{m-1}\right)^{u_{m-1}} \in K^{* 2}$ for some rational integers u_{j}. Consider this relation modulo \mathfrak{P}_{i}. Then, by (2), we have $u_{i} \equiv 0(\bmod 2)$. Therefore, $\left[\theta-A_{1}\right], \cdots,\left[\theta-A_{m-1}\right]$ are independent in $K^{*} / K^{* 2}$.

Lemma 4. Any prime ideal of K relatively prime to 2 is un-
ramified in the quadratic extension $K\left(\sqrt{\theta-A_{i}}\right)$.
Proof. First we claim that $\theta, \theta-A_{1}, \theta-A_{2}, \cdots, \theta-A_{m-1}$ are pairwise relatively prime. For example, assume that there exists a prime ideal \mathfrak{P} such that $\mathfrak{P} \mid\left(\theta, \theta-A_{i}\right)$. Then, by the relation $\theta \prod_{j=1}^{m-1}\left(\theta-A_{j}\right)$ $=C^{2}$, we get $\mathfrak{P} \mid A_{i}$ and $\mathfrak{P} \mid C$. This contradicts (6). Therefore, θ and $\theta-A_{i}$ are relatively prime. Similarly, $\theta-A_{i}$ and $\theta-A_{j}$ are relatively prime for $i \neq j$. Therefore, by the relation $\theta \prod_{j=1}^{m-1}\left(\theta-A_{j}\right)=C^{2}$, there exists an ideal \mathfrak{U} of K such that $\mathfrak{U}^{2}=\left(\theta-A_{i}\right)$. This proves our assertion.

Lemma 5. The prime number 2 is unramified in $K\left(\sqrt{\theta}-\overline{A_{i}}\right) / \boldsymbol{Q}$.
Proof. Obviously, $K\left(\sqrt{\theta-A_{i}}\right)=\boldsymbol{Q}\left(\sqrt{\theta-A_{i}}\right)$. The minimal polynomial of $\sqrt{ } \bar{\theta}-A_{i}$ over \boldsymbol{Q} is $h(X)=\left(X^{2}+A_{i}\right) \prod_{j=1}^{m-1}\left(X^{2}+\left(A_{i}-A_{j}\right)\right)-C^{2}$. By (3) and (5), we have $h(X) \equiv X^{2 m}-1\left(\bmod 2^{v}\right)$. Since $v>2 m$, we see, from Krasner's lemma (cf. Lang [6], Chap. 2), that the splitting field of $h(X)$ over \boldsymbol{Q}_{2} is $\boldsymbol{Q}_{2}\left({ }^{2 m} \sqrt{1}\right)$. Since m is odd, $\boldsymbol{Q}_{2}\left({ }^{2 m} \sqrt{1}\right)$ is unramified over \boldsymbol{Q}_{2}. This proves our assertion.

Lemma 6. The number field K is totally real. $\left(\theta-A_{1}\right)\left(\theta-A_{2}\right)$, $\left(\theta-A_{3}\right)\left(\theta-A_{4}\right), \cdots,\left(\theta-A_{m-2}\right)\left(\theta-A_{m-1}\right)$ are totally positive elements of K.

Proof. By (9), all roots of $f(X)$ are real. Let $\theta, \theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(m-1)}$ be the roots of $f(X)$. We may assume that $\theta<\theta^{(1)}<\theta^{(2)}<\cdots<\theta^{(m-1)}$. Since the graph of $Y=f(X)$ is obtained by translating that of Y $=X \prod_{i=1}^{m-1}\left(X-A_{i}\right)$ downward along the Y-axis, we see, from (7), that

$$
\begin{aligned}
0<\theta & <\theta^{(1)}<A_{1}<A_{2}<\theta^{(2)}<\theta^{(3)}<A_{3}<\cdots<\theta^{(m-3)} \\
& <\theta^{(m-2)}<A_{m-2}<A_{m-1}<\theta^{(m-1)} .
\end{aligned}
$$

Therefore, $\theta-A_{k}$ and $\theta-A_{k+1}$ have the same signatures, for odd number k with $1 \leqq k \leqq m-2$. This proves our assertion.

Finally, from the proposition, by taking various p_{i}, A_{i} and C, we obtain infinitely many fields K satisfying the assertions of our Theorem. This completes the proof of our Theorem.

Remark 2. Let r_{1} and r_{2} be an odd natural number and a nonnegative rational integer respectively. Set $m=r_{1}+2 r_{2}$. As in [1], it is possible to choose A_{i} and C so that they satisfy the condition (9^{\prime}) instead of (9).
(9^{\prime}) As compared with $A_{i}\left(1 \leqq i \leqq 2 r_{2}-1\right),|C|$ is so large, and as compared with $|C|, A_{k}$ and $\left|A_{k}-A_{\ell}\right|\left(2 r_{2} \leqq k, \ell \leqq m-1, k \neq \ell\right)$ are so large that $f(X)$ has r_{1} real and $2 r_{2}$ imaginary roots.

Then, by the same argument as above, we see that the field

$$
\begin{array}{r}
K\left(\sqrt{\theta}, \sqrt{\theta-A_{1}}, \cdots, \sqrt{\theta-A_{2 r_{2-1}}},\right. \\
\left.\quad \sqrt{\left(\theta-A_{2 r_{2}+1}\right)\left(\theta-A_{2 r_{2}+2}\right)}, \cdots, \sqrt{\left(\theta-A_{m-2}\right)\left(\theta-A_{m-1}\right)}\right)
\end{array}
$$

is an unramified abelian extension over K of type (2,2, $\cdots, 2$) with rank $2 r_{2}+\left(r_{1}-1\right) / 2$.

References

[1] T. Azuhata and H. Ichimura: On the divisibility problem of the class numbers of algebraic number fields. Preprint (1982).
[2] D. Hilbert: Über die Irreducibilitat ganzer rationaler Functionen mit ganzzahligen Koeffizienten. J. reine angew. Math., 110, 104-129 (1892).
[3] H. Ichimura: On the class numbers of certain cubic, quartic and quintic fields. Master's Thesis, University of Tokyo (1981) (in Japanese).
[4] M. Ishida: On 2-rank of the ideal class groups of algebraic number fields. J. reine angew. Math., 273, 165-169 (1975).
[5] -: A note on class numbers of algebraic number fields. J. Number Theory, 1, 65-69 (1969).
[6] S. Lang: Algebraic Number Theory. Addison-Wesley (1973).
[7] K. Uchida: Class numbers of cubic cyclic fields. J. Math. Soc. Japan, 26, 447-453 (1974).
[8] P. J. Weinberger: Real quadratic fields with class number divisible by n. J. Number Theory, 5, 237-241 (1973).
[9] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).

