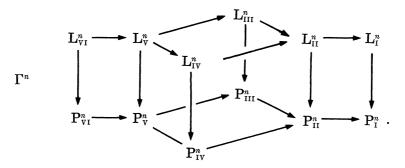
[Vol. 58(A),

82. On the Isomonodromic Deformation for Linear Ordinary Differential Equations of the Second Order. II


By Tosihusa KIMURA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

\$1. Introduction. In a previous note [1], we derived a series of six Hamiltonian systems

 $\mathbf{P}_{J}^{n} \qquad d\lambda/dt = \partial H_{J}^{n}/\partial \mu, \qquad d\mu/dt = -\partial H_{J}^{n}/\partial \lambda$ from a series of six linear differential equations $\mathbf{L}_{J}^{n} \qquad d^{2}y/dx^{2} + p_{J}^{n}dy/dx + q_{J}^{n}y = \mathbf{0},$ where $J = \text{VI}, \text{ V}, \dots, \text{ I}$ and $n = 1, 2, \dots$, and for n = 1, 2, 3, we obtained the commutative diagrams

Here, by the horizontal arrows above and below we mean processes of confluence of singularities and of degeneration of systems respectively and by the vertical arrows a process of deriving deformation equations.

In this note, we announce the existence of a transformation from Γ^{1} to Γ^{2} .

§ 2. Preliminaries. If a linear differential equation (2.1) $y'' + A_1y' + A_2y = 0$ is transformed into an equation (2.2) $z'' + B_1z' + B_2z = 0$ by a linear transformation (2.3) $z = S_1y' + S_2y$, then we have the following relations (2.4) $S_1'' + (B_1 - 2A_1)S_1' + 2S_2' + A_1(A_1 - B_1)S_1 + (B_2 - A_2 - A_1')S_1 + (B_1 - A_1)S_2 = 0$, No. 7] Isomonodromic Deformation for Second Order Equations. II

$$(2.5) \qquad S_2''-2A_2S_1'+B_1S_2'+A_2(A_1-B_1)S_1-A_2'S_1+(B_2-A_2)S_2=0.$$

Suppose that A_1 , A_2 , B_1 and B_2 are rational functions in x. Then the existence of the transformation (2.3) with rational S_1 , S_2 is equivalent to the condition that the monodromy data of (2.1) and (2.2) coincide with each other.

§ 3. Equations L_I^1 , L_I^2 and systems P_I^1 , P_I^2 . We denote the equations L_I^1 and L_I^2 by

(3.1)
$$y'' - \frac{1}{x-\lambda} y' + \left(-4x^3 - 2tx - 2H - \frac{\mu}{x-\lambda}\right) y = 0,$$

(3.2)
$$z'' - \frac{1}{x-l}z' + \left(-4x^3 - 2tx - 2h - \frac{m}{x-l}\right)z = 0$$

and the systems P_I^1 and P_I^2 by

(3.3)
$$d\lambda/dt = \mu, \quad d\mu/dt = 6\lambda^2 + t,$$

(3.4) $\frac{dl}{dt} = \frac{m}{4} + \frac{6l^2 + t}{m^2}, \quad \frac{dm}{dt} = 6l^2 + t + \frac{12l}{m}$

We suppose that to given values of l, m, h there correspond values of λ, μ, H such that the monodromy data of (3.1) coincide with those of (3.2), namely, (3.1) is taken into (3.2) by a transformation of the form (2.3) with rational S_1 and S_2 . Then studies of local behavior of solutions of (3.1) and (3.2) around singularities lead us to

$$S_1 = \frac{1}{x-\lambda}, \qquad S_2 = s - \frac{\mu}{x-\lambda}.$$

Putting

we obtain from (2.4)

(3.5)
$$2(\lambda - l)s - 2\mu - m = 0,$$

(3.6) $(\lambda - l)s - 2(H - h)(\lambda - l) + 2\mu + m = 0,$

and from (2.5)

(3.7)
$$m(\lambda - l)s + 4H + m\mu + 4(2l^3 + tl) = 0,$$

(3.8)
$$2H - \mu^2 - 2(2\lambda^3 + t\lambda) = 0,$$

(3.9)
$$(\lambda - l)\mu s + 2(\lambda - l)\mu (H - h) + 4H + m\mu + 4(2\lambda^3 + t\lambda) = 0,$$

$$(3.10) (H-h)s - 2\lambda - 4l = 0.$$

The equality (3.8) shows that $x = \lambda$ is an apparent singularity of (3.1). We get from (3.5)-(3.7)

(3.11)
$$s = -(\mu + m/2)/(\lambda - l),$$

(3.12)
$$H-h=-(\mu+m/2)/2(\lambda-l),$$

$$(3.13) H = m^3/8 - (2l^3 + tl),$$

and we see that (3.9) is derived from (3.6) and (3.8). Inserting (3.11)–(3.13) into (3.8) and (3.10), we get two equations with respect to λ and μ , from which we obtain

(3.14)
$$\lambda = -2l + \frac{(6l^2 + t)^2}{m}, \qquad \mu = -\frac{m}{2} + \frac{6l(6l^2 + t)}{m} - \frac{2(6l^2 + t)^3}{m^3}.$$

295

It is easy to see that the transformation (3.14) changes (3.3) into (3.4) and that (3.14) is a canonical transformation.

§ 4. Statement of main theorems and a conjecture. The arguments and calculations done for L_I^1, L_I^2, P_I^1 and P_I^2 can be applied to L_J^1, L_J^2, P_J^1 and P_J^2 for $J = II, \dots, VI$.

We write L_J^1 and L_J^2 as

(4.1) $y'' + p_J^1 y' + q_J^1 y = 0,$ (4.2) $z'' + p_J^2 z' + q_J^2 z = 0$

and write P_J^1 and P_J^2 as

(4.3) $d\lambda/dt = \partial H_J^1/\partial \mu, \qquad d\mu/dt = -\partial H_J^1/\partial \lambda,$ (4.4) $dl/dt = \partial H_J^2/\partial m, \qquad dm/dt = -\partial H_J^2/\partial l.$

Theorem 1. For each J there exists a linear transformation σ_J of the form (2.3) which takes (4.1) into (4.2) if and only if λ and μ are related to l, m, t by

 $\tau_J: \lambda = \phi_J(l, m, t), \quad \mu = \psi_J(l, m, t),$

where ϕ_J and ψ_J are rational functions in l, m, t.

Theorem 2. The transformation τ_J changes (4.3) into (4.4) and is a canonical transformation.

Theorems 1 and 2 say that there exists a transformation

 $\rho: \Gamma^1 \longrightarrow \Gamma^2$

which consists of σ_J and τ_J $(J = VI, V, \dots, I)$.

Theorem 3. The general solution of P_J^2 ($J = VI, \dots, I$) is finitely many valued around its fixed singularities and its movable branch points are all algebraic ones.

Conjecture. For each $n=2, 3, \dots$, there exists a transformation $\rho^n \colon \Gamma^1 \longrightarrow \Gamma^n$

which consists of linear transformations σ_J^n and canonical transformations τ_J^n , where σ_J^n sends L_J^1 into L_J^n and τ_J sends P_J^1 into P_J^n . For n=3, $4, \dots, \tau_J^n$ are algebraic transformations.

It is not difficult to verify the existence of σ_{I}^{3} and τ_{I}^{3} .

§ 5. Linear transformations σ_J . Explicit expressions of τ_J becomes complicated as J increases, but explicit expressions of σ_J remain simple. So we are content to give a list of σ_J .

$$\begin{split} \sigma_{\rm II} &: S_1 = 1/(x-\lambda), \qquad S_2 = s - \mu/(x-\lambda), \\ \sigma_{\rm III} &: S_1 = x^2/(x-\lambda), \qquad S_2 = s - \lambda^2 \mu/(x-\lambda), \\ \sigma_{\rm IV} &: S_1 = x/(x-\lambda), \qquad S_2 = s - \lambda \mu/(x-\lambda), \\ \sigma_{\rm V} &: S_1 = x(x-1)^2/(x-\lambda), \\ S_2 = \chi(x-\lambda) + s - \lambda(\lambda-1)^2 \mu/(x-\lambda), \\ \sigma_{\rm VI} &: S_1 = x(x-1)(x-t)/(x-\lambda), \\ S_2 = \chi(x-\lambda) + s - \lambda(\lambda-1)(\lambda-t)\mu/(x-\lambda). \end{split}$$

By the way we want to make a comment on the order of the systems P_{I}^{n} , P_{II}^{n} , \cdots , P_{VI}^{n} . If J increases according to the complexity of the

systems, then the numbers III and IV should be interchanged.

§6. Calculations by computer. To prove that τ_{vI} is a canonical transformation, it is sufficient to show that

(6.1) $\partial_x \phi_{\mathrm{VI}} \cdot \partial_y \psi_{\mathrm{VI}} - \partial_x \psi_{\mathrm{VI}} \cdot \partial_y \phi_{\mathrm{VI}} = 1.$

A straightforward examination of (6.1) needs enormous calculations which exceed a scope of handworks. The author thanks Prof. Yasumasa Kanada, Computer Center, University of Tokyo, who checked (6.1) by utilizing a computer algebra system: HLISP-REDUCE-2. The computer was used to perform polynomial multiplications and factorizations. The author thanks also Prof. Eiichi Goto, Department of Information Science, University of Tokyo, for his valuable advices.

Reference

 Kimura, T.: On the isomonodromic deformation for linear ordinary differential equations of the second order. Proc. Japan Acad., 57A, 285-290 (1981).