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1. Introduction. In a previous note [1], we derived a series
of six Hamiltonian systems
P d2/dt=H/[, dl/dt= --H/2
from a series of six linear differential equations

L3 d2y/dx +pdy/dx+q3y= O,
where J-VI, V, ., I and n= 1, 2, ., and for n= 1, 2, 3, we obtained
the commutative diagrams

Here, by the horizontal arrows above and below we mean processes
of confluence of singularities and of degeneration of systems respec-
tively and by the vertical arrows a process of deriving deformation
equations.

In this note, we announce the existence of a transformation from
F to F.

2. Preliminaries. I a linear differential equation
(2.1) y"+Ay’+A.y 0
is transformed into an equation
(2.2) z"+Bz’+Bz 0
by a linear transformation
(2.3) z S,y’ +Sy,
then we have the following relations
(2.4) S’ +(B,--2A,)S+2S+A,(A,-B,)S,

+(B-A.-A)S,+(B-A,)S. O,
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(2.5) S’( 2AfS+ 1S+Af(A1-B1)S1 SI+(Bf-Af)Sf=O.
Suppose that A, A, B and B. are rational unctions in x. Then

the existence o the transformation (2.3) with rational S, S is equiv-
alent to the condition that the monodromy data of (2.1) and (2.2)
coincide with each other.

3. Equations L, L and systems P, P. We denote the equa-
tions L and L by

1(3.) "-
1(3.2) z"-

x-1

yt+(-4x3-2tx-2H----- )y=O,
z’+(-4x-2tx-2h-m)z--OX--1

and the systems P and P by
(3.3) d,/ dr-/, d// dr-- 6, + t,

(3.4) dl m +61+t dm _612+t+ 12__!
dt 4 m dt m

We suppose that to given values of l, m, h there correspond values
of ,/, H such that the monodromy data of (3.1) coincide with those
of (3.2), namely, (3.1) is taken into (3.2) by a transformation of the
form (2.3) with rational S, and S. Then studies of local behavior of
solutions of (3.1) and (3.2) around singularities lead us to

S- 1

’ S=s-.
x-- x ,

Putting
A-- 1/(x--2),
BI-- --2/(x--l),

we obtain from (2.4)
(3.5)
(3.6)
nd from (2.5)
(3.7)
(3.8)

A 4x 2tx 2H+l/ (x ,)
B. 4x 2tx 2h+m/ (x 1)

2(2--1)s 2l--m= O,
(-- 1)s 2(H-- h)(2- l) +2/+m-- 0,

m(2 1)s+4H+m/+4(2/3+ tl) 0,
2H-/--2(22 + t,) 0,

(3.9) (,-l)/s+2(,-l)/(H-h)+4H+m/+4(2,+t,)=O,
(3.10) (H- h)s 2, 41= O.
The equality (3.8) shows that x=2 is an apparent singularity of (3.1).
We get rom (3.5)-(3.7)
(3.11) s (/+ m/2)/ (--1),
(3.12) H--h= --(/+m/2)/2(--1),
(3.13) H=m/8- (2/+ tl),
and we see that (3.9) is derived rom (3.6) and (3.8). Inserting (3.11)-
(3.13) into (3.8) and (3.10), we get two equations with respect o 2 and
/, from which we obtain

m 6/(6/+ t) 2(6// t)(3.14) 2 21+ (6/+ t)"
/

m 2 m m
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It is easy to see that the transformation (3.14) changes (3.3) into (3.4)
and that (3.14) is a canonical transformation.

4o Statemen of main theorems and a conjecture. The argu-
ments and calculations done or L, L, P and P can be applied to L,
L, P and P or J-II, ..., VI.

We write L and L as
(4.1) y"+py’+ qy=O,
(4.2) z"+pz’+qz=O
and write P and P as
(4.3) df/dt=3Hl/3/, d//dt= -3HI/32,
(4.4) dl/dt=3H/3m, dm/dt= -3H/l.

Theorem 1. For each J there exists a linear transformation
of the form (2.3) which takes (4.1) into (4.2) if and only if and [ are
related to l, m, t by

=(/, m, t), /=(1, m, t),
where and are rational functions in l, m, t.

Theorem 2. The transformation r changes (4.3) into (4.4) and
is a canonical transformation.

Theorems 1 and 2 say that there exists a transformation
p: F >F

which consists of a and z (J-VI, V, ..., I).
Theorem 3. The general solution of P (J--VI, ..., I) is finitely

many valued around its fixed singularities and its movable branch
points are all algebraic ones.

Conjecture. For each n=2, 3, ..., there exists a transformation
pn: F_ >Fn

which consists of linear transformations a and canonical transforma-
tions , where a sends LI into L and r sends P into P. For n=3,
4, ..., are algebraic transformations.

It ,is not difficult to verify the existence of a and r.
5. Linear transformations az. Explicit expressions of be-

comes complicated as J increases, but explicit expressions of a remain
simple. So we are content to give a list of

a S=l/(x-), S=s-p/(x-),
a S=x/(x-), S=s-/(x-),
v S=x/(x-), S=s-/(x-),
v S=x(x-1)/(x-),

S=Z(x-)+s-(-)/(x-),
aw S=x(x-1)(x-t)/(x-2),

S Z(x-)+s-(-)(-t)/(x- ).
By the way we want to make a comment on the order of the sys-

tems P, P, ..., P. If J increases according to the complexity of the
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systems, then the numbers III and IV should be interchanged.
6. Calculations by computer. To prove that rv is a canonical

transformation, it is sufficient to show that
(6.1) xi"w-w" 1.
A straightforward examination o (6.1) needs enormous calculations
which exceed a scope of handworks. The author thanks Prof.
Yasumasa Kanada, Computer Center, University o Tokyo, who
checked (6.1) by utilizing a computer algebra system: HLISP-
REDUCE-2. The computer was used to perform polynomial multipli-
cations and factorizations. The author thanks also Prof. Eiichi Goto,
Department of Information Science, University of Tokyo, for his
valuable advices.
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