82. On the Isomonodromic Deformation for Linear Ordinary Differential Equations of the Second Order. II

By Tosihusa Kimura

Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)
§ 1. Introduction. In a previous note [1], we derived a series of six Hamiltonian systems
$\mathrm{P}_{J}^{n} \quad d \lambda / d t=\partial H_{J}^{n} / \partial \mu, \quad d \mu / d t=-\partial H_{J}^{n} / \partial \lambda$
from a series of six linear differential equations
$\mathrm{L}_{J}^{n} \quad d^{2} y / d x^{2}+p_{J}^{n} d y / d x+q_{J}^{n} y=0$,
where $J=\mathrm{VI}, \mathrm{V}, \ldots, \mathrm{I}$ and $n=1,2, \cdots$, and for $n=1,2,3$, we obtained the commutative diagrams

Here, by the horizontal arrows above and below we mean processes of confluence of singularities and of degeneration of systems respectively and by the vertical arrows a process of deriving deformation equations.

In this note, we announce the existence of a transformation from Γ^{1} to Γ^{2}.
§2. Preliminaries. If a linear differential equation
(2.1)

$$
y^{\prime \prime}+A_{1} y^{\prime}+A_{2} y=0
$$

is transformed into an equation

$$
\begin{equation*}
z^{\prime \prime}+B_{1} z^{\prime}+B_{2} z=0 \tag{2.2}
\end{equation*}
$$

by a linear transformation
(2.3)

$$
z=S_{1} y^{\prime}+S_{2} y
$$

then we have the following relations

$$
\begin{align*}
S_{1}^{\prime \prime}+ & \left(B_{1}-2 A_{1}\right) S_{1}^{\prime}+2 S_{2}^{\prime}+A_{1}\left(A_{1}-B_{1}\right) S_{1} \tag{2.4}\\
& +\left(B_{2}-A_{2}-A_{1}^{\prime}\right) S_{1}+\left(B_{1}-A_{1}\right) S_{2}=0
\end{align*}
$$

$$
\begin{equation*}
S_{2}^{\prime \prime}-2 A_{2} S_{1}^{\prime}+B_{1} S_{2}^{\prime}+A_{2}\left(A_{1}-B_{1}\right) S_{1}-A_{2}^{\prime} S_{1}+\left(B_{2}-A_{2}\right) S_{2}=0 . \tag{2.5}
\end{equation*}
$$

Suppose that A_{1}, A_{2}, B_{1} and B_{2} are rational functions in x. Then the existence of the transformation (2.3) with rational S_{1}, S_{2} is equivalent to the condition that the monodromy data of (2.1) and (2.2) coincide with each other.
§3. Equations L_{1}^{1}, L_{I}^{2} and systems P_{I}^{1}, P_{I}^{2}. We denote the equations $\mathrm{L}_{\mathrm{I}}^{1}$ and $\mathrm{L}_{\mathrm{I}}^{2}$ by

$$
\begin{align*}
& y^{\prime \prime}-\frac{1}{x-\lambda} y^{\prime}+\left(-4 x^{3}-2 t x-2 H-\frac{\mu}{x-\lambda}\right) y=0 \tag{3.1}\\
& z^{\prime \prime}-\frac{1}{x-l} z^{\prime}+\left(-4 x^{3}-2 t x-2 h-\frac{m}{x-l}\right) z=0 \tag{3.2}
\end{align*}
$$

and the systems P_{I}^{1} and P_{I}^{2} by

$$
\begin{align*}
d \lambda / d t=\mu, & d \mu / d t & =6 \lambda^{2}+t, \tag{3.3}\\
\frac{d l}{d t}=\frac{m}{4}+\frac{6 l^{2}+t}{m^{2}}, & \frac{d m}{d t} & =6 l^{2}+t+\frac{12 l}{m} . \tag{3.4}
\end{align*}
$$

We suppose that to given values of l, m, h there correspond values of λ, μ, H such that the monodromy data of (3.1) coincide with those of (3.2), namely, (3.1) is taken into (3.2) by a transformation of the form (2.3) with rational S_{1} and S_{2}. Then studies of local behavior of solutions of (3.1) and (3.2) around singularities lead us to

$$
S_{1}=\frac{1}{x-\lambda}, \quad S_{2}=s-\frac{\mu}{x-\lambda} .
$$

Putting

$$
\begin{array}{ll}
A_{1}=-1 /(x-\lambda), & A_{2}=-4 x^{3}-2 t x-2 H+\mu /(x-\lambda), \\
B_{1}=-2 /(x-l), & B_{2}=-4 x^{3}-2 t x-2 h+m /(x-l),
\end{array}
$$

we obtain from (2.4)

$$
\begin{gather*}
2(\lambda-l) s-2 \mu-m=0 \tag{3.5}\\
(\lambda-l) s-2(H-h)(\lambda-l)+2 \mu+m=0 \tag{3.6}
\end{gather*}
$$

and from (2.5)

$$
\begin{equation*}
m(\lambda-l) s+4 H+m \mu+4\left(2 l^{3}+t l\right)=0 \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
(\lambda-l) \mu s+2(\lambda-l) \mu(H-h)+4 H+m \mu+4\left(2 \lambda^{3}+t \lambda\right)=0, \tag{3.8}
\end{equation*}
$$

The equality (3.8) shows that $x=\lambda$ is an apparent singularity of (3.1). We get from (3.5)-(3.7)

$$
\begin{align*}
& s=-(\mu+m / 2) /(\lambda-l), \tag{3.11}\\
& H-h=-(\mu+m / 2) / 2(\lambda-l), \tag{3.12}\\
& H=m^{3} / 8-\left(2 l^{3}+t l\right), \tag{3.13}
\end{align*}
$$

and we see that (3.9) is derived from (3.6) and (3.8). Inserting (3.11)(3.13) into (3.8) and (3.10), we get two equations with respect to λ and μ, from which we obtain

$$
\begin{equation*}
\lambda=-2 l+\frac{\left(6 l^{2}+t\right)^{2}}{m}, \quad \mu=-\frac{m}{2}+\frac{6 l\left(6 l^{2}+t\right)}{m}-\frac{2\left(6 l^{2}+t\right)^{3}}{m^{3}} . \tag{3.14}
\end{equation*}
$$

It is easy to see that the transformation (3.14) changes (3.3) into (3.4) and that (3.14) is a canonical transformation.
§4. Statement of main theorems and a conjecture. The arguments and calculations done for $\mathrm{L}_{\mathrm{I}}^{1}, \mathrm{~L}_{\mathrm{I}}^{2}, \mathrm{P}_{\mathrm{I}}^{1}$ and $\mathrm{P}_{\mathrm{I}}^{2}$ can be applied to L_{J}^{1}, $\mathrm{L}_{J}^{2}, \mathrm{P}_{J}^{1}$ and P_{J}^{2} for $J=\mathrm{II}, \cdots$, VI.

We write L_{J}^{1} and L_{J}^{2} as

$$
\begin{align*}
& y^{\prime \prime}+p_{J}^{1} y^{\prime}+q_{J}^{1} y=0 \tag{4.1}\\
& z^{\prime \prime}+p_{J}^{2} z^{\prime}+q_{J}^{2} z=0 \tag{4.2}
\end{align*}
$$

and write P_{J}^{1} and P_{J}^{2} as

$$
\begin{array}{ll}
d \lambda / d t=\partial H_{J}^{1} / \partial \mu, & d \mu / d t=-\partial H_{J}^{1} / \partial \lambda \\
d l / d t=\partial H_{J}^{2} / \partial m, & d m / d t=-\partial H_{J}^{2} / \partial l . \tag{4.4}
\end{array}
$$

Theorem 1. For each J there exists a linear transformation σ_{J} of the form (2.3) which takes (4.1) into (4.2) if and only if λ and μ are related to l, m, t by

$$
\tau_{J}: \lambda=\phi_{J}(l, m, t), \quad \mu=\psi_{J}(l, m, t)
$$

where ϕ_{J} and ψ_{J} are rational functions in l, m, t.
Theorem 2. The transformation τ_{J} changes (4.3) into (4.4) and is a canonical transformation.

Theorems 1 and 2 say that there exists a transformation

$$
\rho: \Gamma^{1} \longrightarrow \Gamma^{2}
$$

which consists of σ_{J} and $\tau_{J}(J=\mathrm{VI}, \mathrm{V}, \cdots, \mathrm{I})$.
Theorem 3. The general solution of $\mathrm{P}_{J}^{2}(J=\mathrm{VI}, \cdots, \mathrm{I})$ is finitely many valued around its fixed singularities and its movable branch points are all algebraic ones.

Conjecture. For each $n=2,3, \cdots$, there exists a transformation

$$
\rho^{n}: \Gamma^{1} \longrightarrow \Gamma^{n}
$$

which consists of linear transformations σ_{J}^{n} and canonical transformations τ_{J}^{n}, where σ_{J}^{n} sends L_{J}^{1} into L_{J}^{n} and τ_{J} sends P_{J}^{1} into P_{J}^{n}. For $n=3$, $4, \cdots, \tau_{J}^{n}$ are algebraic transformations.

It is not difficult to verify the existence of σ_{I}^{3} and τ_{I}^{3}.
$\S 5$. Linear transformations σ_{J}. Explicit expressions of τ_{J} becomes complicated as J increases, but explicit expressions of σ_{J} remain simple. So we are content to give a list of σ_{J}.

$$
\begin{aligned}
& \sigma_{\mathrm{II}}: S_{1}=1 /(x-\lambda), \quad S_{2}=s-\mu /(x-\lambda), \\
& \sigma_{\mathrm{III}}: S_{1}=x^{2} /(x-\lambda), \quad S_{2}=s-\lambda^{2} \mu /(x-\lambda), \\
& \sigma_{\mathrm{IV}}: S_{1}=x /(x-\lambda), \quad S_{2}=s-\lambda \mu /(x-\lambda), \\
& \sigma_{\mathrm{V}}: S_{1}=x(x-1)^{2} /(x-\lambda), \\
& S_{2}=\chi(x-\lambda)+s-\lambda(\lambda-1)^{2} \mu /(x-\lambda), \\
& \sigma_{\mathrm{VI}}: S_{1}=x(x-1)(x-t) /(x-\lambda), \\
& S_{2}=\chi(x-\lambda)+s-\lambda(\lambda-1)(\lambda-t) \mu /(x-\lambda) .
\end{aligned}
$$

By the way we want to make a comment on the order of the systems $\mathrm{P}_{\mathrm{I}}^{n}, \mathrm{P}_{\mathrm{II}}^{n}, \cdots, \mathrm{P}_{\mathrm{VI}}^{n}$. If J increases according to the complexity of the
systems, then the numbers III and IV should be interchanged.
§6. Calculations by computer. To prove that τ_{vI} is a canonical transformation, it is sufficient to show that

$$
\begin{equation*}
\partial_{x} \phi_{\mathrm{VI}} \cdot \partial_{y} \psi_{\mathrm{VI}}-\partial_{x} \psi_{\mathrm{VI}} \cdot \partial_{y} \phi_{\mathrm{VI}}=1 \tag{6.1}
\end{equation*}
$$

A straightforward examination of (6.1) needs enormous calculations which exceed a scope of handworks. The author thanks Prof. Yasumasa Kanada, Computer Center, University of Tokyo, who checked (6.1) by utilizing a computer algebra system: HLISP-REDUCE-2. The computer was used to perform polynomial multiplications and factorizations. The author thanks also Prof. Eiichi Goto, Department of Information Science, University of Tokyo, for his valuable advices.

Reference

[1] Kimura, T.: On the isomonodromic deformation for linear ordinary differential equations of the second order. Proc. Japan Acad., 57A, 285-290 (1981).

