
290 Proc. Japan Acad., 58, Ser. A (1982) [Vol. 58(A),
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Introduction. With his physical postulates Feynman ([4], [5])
conceived the eminent idea of path integral in quantum mechanics.
Kac [6] has given a rigorous realization of Feynman’s idea for pure-
imaginary-time quantum mechanics. Namely, he has represented the
solution of the heat equation by the Wiener measure over the Brownian
path space. It is called the Feynman-Kac formula.

The aim of the present note is to give a path integral formula for
the solution of the Dirac equation in two-dimensional space-time. It
shows a very close analogy with the Feynman-Kac formula, but the
path space measure constructed is other than the Wiener measure.

Some physical treatments of the problem are found in Feynman
[5, Chap. 2, 2-4], Riazanov [8] and Rosen [9].

1. Statement of result. The Dirac equation in two space-time
dimensions has the following form"

0 (t x)= -o -iA(t, x) -im+iAo(t, x) (t, ),
(1.1) --3-- x-

teR, xeR.
Here a and fl are 2 2 Hermitian symmetric matrices with ---1
and afl+fl--0. Both Ao(t, x) and A(t, x) are real-valued unctions on
R. The constant m is the rest mass of the particle, and other physical
units are chosen such that the light velocity c and the Planck constant
t/equal 1.

Now put Xo-t and x--x to rewrite (1.1) as
a iAo(x)(1.2) iH(x)-- -fx,-iAl(x) +im fl (x)-0,

where x-(x0, x) e R. Introduce the proper time s (cf. [8]) to consider
the Cauchy problem for

(1.3) .-3-(s,_ x)--iH(s, x), s e R, x e R

with initial data (0, x)-g(x).
Then the solution o (1.3) admits the ollowing path integral

representation. We set A(x)-(Ao(x),A(x)), and use the physicist
inner product (., .).

Theorem. Let A(x) be an R2-valued, C function defined in R.
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Then for every s>O and for every f and g e (R) there exists a
countably additive complex measure ,8,f,q on the Banach space C([0, s]
R2) of the continuous paths X:[0, s]-R such that

(f etsng} (f(. ), 4x(s, )}
(1.4) = d,,f,(X)exp {i f: A(X(r))dX(r)}.
The support of ,,, is included in the set of those Lipschitz continuous
paths X(r) with Lipschitz constant / which connect the points of
supp g with the points of supp f.

Remarks. 1. A path integral representation of the solution
(s, x)itself in terms of a 22 complex matrix-valued measure ,,x on
C([0, s] R) is also possible.

2. The formula (1.4) yields the expression of the Green function
for the Dirac equation (1.2) if it exists:

3. A further study shows that A(x) is allowed to depend on s,
so that a similar path integral representation holds for the solution
(t, x)of the Cauchy problem for (1.1) with initial data (0, x)=g(x).
The corresponding path space measure has, for m>0, the support on
those Lipschitz continuous paths X [0, t]--.R whose slopes are smaller
than or equal to the light velocity 1. If m=0, the support is on the
set of the paths with slopes exactly equal to the light velocity 1.

4. Daletskii ([1], [2, 5, 8], [3])studied some related problems,
but no countably additive path space measure was constructed.

2. Sketch of proof. Our construction of the path space measure
will make use of Nelson’s method [7] of construction of the Wiener
measure.

Let/ be the one-point compactification of R, and X= 0,s3
the product of the uncountably many copies of /. We may regard

X as the set of all paths X" [0, s]/, possibly discontinuous and pos-
sibly passing through infinity. Equipped with the product topology,
X is a compact Hausdorff space by the Tychonoff theorem. Let C(X)
be the Banach space of the continuous functions on X, and Cn(X) its
subspace consisting of all (X) for which there exist a finite partition
0=s0<s,<. <Sn=S Of the interval [0, s], and a bounded continuous
function F(x, x, ..., x) on ()+’ such that (X)=F(X(so), X(s,), ...,
X(sn)). By the Stone-Weierstrass theorem Cn(X) is dense in C(X.).

Let K(s, x)be the fundamental solution for the Cauchy problem
for (1.3) with A(x)=_O, which is given by

K(s x)=(Xo+S)[ 0 0 ]-+ -XI- / imfl (Jo(m(s2- x)l/2)t(s--Ixl I)),

sO.
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Here Jo(t) is the Bessel function of order zero, and O(t) the Heaviside
unction 0(t)= 1 for t 0, =0 for t 0.

For each s0 and or each f and g e 3(R) define a linear orm
Ls,,q on Cn(X) by

n+l

L,:,q() j’(xn)K(sn--Sn_,
R R

K(s, x-x)F(x, x, ., xOg(x)dxdx1. dxn.
The 2ollowing lemma plays a crucial role.
Lemma. L,,q is well-defined on C(X) and there exists a con-

stant C independent of s such that, for every e Cn(X),
L,,()Ce

By this lemma and by denseness of Cn(X) in C(X), L,, can be
extended to a continuous linear orm on C(X). Thus by the Riesz
theorem there exists a unique regular Borel measure ,,, on X such
that, or every e C(X),

=[ d,,,(X)(X).L,,()
JX

In view of the property of the kernel K(s, x) we can see that ,,,
has the support in C([0, s] R0, and further in the set of the Lipschitz
continuous paths with the property mentioned in Theorem.

To establish (1.4) define the operator

(T(r)g)(x)= K(r, x-y)e()-)g(y)dy

or g e (g0. Then we obtain or f e (R0 with s=js/n

f T(ng):I ds,f,q(X) exp {i A(X(sj_I))(X(sj)--X(sj_I))}.
kn/ J=

It is shown that as n, the left-hand side converges to (f, e’g},
while the right-hand side does to the last member o (1.4).

Detailed proofs and extensions of the results will appear elsewhere.
The author is grateful to Pro2s. H. Araki, H. Ezawa, T. Hida

and J. R. Klauder 2or their interest and valuable discussions. He is
also indebted to Dr. Hiroshi Tamura, Department of Physics, for
numerous discussions.
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