8. Gauss-Manin System and Mixed Hodge Structure

By Morihiko SAITO

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1982)

Let $f: \mathbb{C}^{n+1}, 0 \to \mathbb{C}, 0$ be a holomorphic function with an isolated singularity. There are two ways of describing the degeneracy of a one-parameter family $\{X_i = f^{-1}(t)\}$. One is the theory of Gauss-Manin connection. Here, the Brieskorn lattice $\mathcal{H}_{X,0}^{(0)} = \Omega_{X,0}^{n+1}/df \wedge d\Omega_{X,0}^{n-1}$ plays an important role. The other is the theory of mixed Hodge structure of Steenbrink on the vanishing cohomology $H^n(X_{\infty}, \mathbb{C})$ (cf. (1.2)).

In [7], Scherk and Steenbrink constructed a filtration on $H^n(X_{\infty}, C)$ using $\mathcal{H}_{X,0}^{(0)}$, and asserted that the filtration coincides with Hodge filtration $\{F_{st}\}$ of the mixed Hodge structure. But there is an example (e.g. $f=x^5+y^5+x^3y^3$), in which their filtration is not compatible with the monodromy decomposition $H^n(X_{\infty}, C) = \bigoplus_{\lambda} H^n(X_{\infty}, C)_{\lambda}$, whereas $\{F_{st}\}$ is compatible with it. Here $H^n(X_{\infty}, C)_{\lambda} := \{u \in H^n(X_{\infty}, C) : (M_x - \lambda)^{n+1}u = 0\}$ and M_x is the local monodromy of f.

This contradiction comes from the following. In [9], Steenbrink proved that the Hodge subbundle of the flat vector bundle $H_Y = \prod_{t \in S^*} H^n(Y_t, C)$ can be extended to the origin as a subbundle of Deligne's extension \mathcal{L}'_Y of $H_Y(\text{cf. (1.3)})$. Here, $\overline{f}: Y \to S$ is a one-parameter projective family. But this limit filtration is not compatible with the monodromy decomposition $H^n(Y_{\infty}, C) = \bigoplus H^n(Y_{\infty}, C)_2$. Following the construction of Schmid, we have to take a base change such that the pullback of H_Y has a unipotent monodromy.

In this note, we give a correct formulation of their assertion and an outline of the proof.

I would like to thank Profs. Kyoji Saito and Masaki Kashiwara for helpful discussions.

§1. Limit mixed Hodge structure. (1.1) Let $f: C^{n+1}, 0 \to C, 0$ be a holomorphic function with an isolated singularity. We may assume that f is a polynomial of degree d, where we can take d as large as we like, and that $\overline{f^{-1}(0)} \subset P^{n+1}$ is smooth away from the origin. We define $Y:=\{\overline{(x,t)} \in C^{n+1} \times S: f(x)=t\} \subset P^{n+1} \times S$ and $X:=(B \times S) \cap Y$, where $S:=\{t \in C: |t| < \eta\}$ and $B:=\{x \in C^{n+1}: ||x|| < \varepsilon\}$. We put $Z:=P^{n+1}$ $\times S, p: Z \to S$ the natural projection and $\overline{f}:=p|_{Y}$. For $1 \gg \varepsilon \gg \eta > 0$, $\overline{f}: Y \to S$ is smooth away from 0 and $f: X \to S$ is a Milnor fibration, i.e., $f': X^* = X - f^{-1}(0) \to S^* = S - \{0\}$ is a C^{∞} -fibration. Hence, $H_x:$ $= R^n f_* C_X|_{S^*}$ (resp. $H_Y:= R^n \overline{f}_* C_Y|_{S^*}$) is a local system with a monodromy M_x (resp. M_y).

(1.2) Let $\pi: \tilde{S} \ni \tilde{t} \mapsto t = \tilde{t}^e \in S$ be an *e*-fold covering of *S*, such that $\tilde{H}_Y := \pi^* H_Y$ has a unipotent monodromy. We set $X_\infty := X \times_S U$ and $Y_\infty := Y \times_S U$, where $U \to S^*$ is a universal covering.

(1.3) As was proved by Manin and Deligne (see [3]), the local system H_x can be uniquely extended to the origin as a locally free \mathcal{O}_{s} -Module \mathcal{L}_x (resp. \mathcal{L}'_x) with a regular singular connection \mathcal{V} , such that \mathcal{V} has a simple pole and the residue of \mathcal{V} has its eigenvalues in (-1, 0] (resp. [0, 1)). We have an isomorphism $H^n(X_\infty, \mathbb{C}) \cong \mathcal{L}_x(0) := \mathcal{L}_{x,0}/t\mathcal{L}_{x,0}$ defined by $u \mapsto \exp(-\log M_x \log t/2\pi\sqrt{-1})u$, where we regard u as a multivalued section of H_x .

We can obtain similar extensions for H_Y , \tilde{H}_Y and $\tilde{H}_X := \pi^* H_X$, and denote them by \mathcal{L}_Y , $\tilde{\mathcal{L}}_Y$, etc.

(1.4) Proposition (Schmid [8]). Let $\{\mathcal{F}\}$ be the Hodge subbundles of H_{Y} (i.e., $\{\mathcal{F}(t)\}$ is the Hodge filtration of $H^{n}(Y_{t}, C)$ for $\forall t \in S^{*}$). Then $\tilde{\mathcal{F}} := \pi^{*}\mathcal{F}$ can be extended to the origin as holomorphic vector subbundles of $\tilde{\mathcal{L}}_{Y}$, and the limit Hodge filtration $F_{S} \subset \tilde{\mathcal{L}}_{Y}(0) \approx H^{n}(Y_{\infty}, C)$ forms a mixed Hodge structure with the monodromy weight filtration.

(1.5) Proposition (Steenbrink [9]). $H^n(X_{\infty}, C)$ has a mixed Hodge structure such that $i^* : H^n(Y_{\infty}, C) \to H^n(X_{\infty}, C)$ is a morphism of mixed Hodge structures.

§ 2. Gauss-Manin systems. (2.1) Definition. The Gauss-Manin systems are the integration of systems defined by

$$\begin{split} \mathcal{H}_{x} &:= \mathcal{H}^{0}(\boldsymbol{R}p_{*}^{\prime}DR_{z^{\prime}/s}(\mathcal{B}_{x|z^{\prime}})[n+1]), \\ \mathcal{H}_{y} &:= \mathcal{H}^{0}(\boldsymbol{R}p_{*}DR_{z/s}(\mathcal{B}_{y|z})[n+1]), \end{split}$$

where $Z' := B \times S$, p' := p | Z', $\mathcal{B}_{X|Z} := \mathcal{H}^1_{[X]}(\mathcal{O}_{Z'})$ and $DR_{Z'/S}(\mathcal{B}_{X|Z'}) := \mathcal{Q}^{\cdot}_{Z'/S} \otimes \mathcal{B}_{X|Z'}$ (cf. [4]).

 \mathcal{H}_x (resp. \mathcal{H}_y) is a holonomic system with a regular singularity such that $DR_s(\mathcal{H}_x) = R^n f_* C_x$ (resp. $\mathcal{H}^o(DR_s(\mathcal{H}_y)) = R^n \bar{f}_* C_y$). We remark that \mathcal{H}_x (resp. \mathcal{H}_y) contains \mathcal{L}_x (resp. \mathcal{L}_y) and the action of $V_{d/dt}$ coincides with the action of $\partial_t \in \mathcal{D}_s$.

(2.2) Definition.

 $DR_{Z'/S}(\mathcal{B}_{X|Z'})(k) := \{\Omega_{Z'/S} \otimes \mathcal{B}_{X|Z'}(\cdot + k - n - 1)\}$

for $k \in \mathbb{Z}_+$: ={m $\in \mathbb{Z}$: $m \geq 0$ }, where $\mathcal{B}_{X|Z'}(m)$: = $\mathcal{D}_{Z'}(m)\delta(f(x)-t)$ and $\mathcal{D}_{Z'}(m)$: ={ $\sum_{|\nu| \leq m} a_{\nu} \partial^{\nu}$ } $\subset \mathcal{D}_{Z'}$ for $m \in \mathbb{Z}$. We define $DR_{Z/S}(\mathcal{B}_{Y|Z})(k)$ and $\mathcal{B}_{Y|Z}(m)$ similarly.

(2.3) Definition.

$$\mathcal{H}_{x}^{(k)} := \operatorname{Im}\left(\mathcal{H}^{0}(\mathbf{R}p'_{*}(DR_{Z'/S}(\mathcal{G}_{X|Z'})(k))[n+1]) \longrightarrow \mathcal{H}_{x}\right) \qquad k \in \mathbb{Z}_{+},$$

$$\mathcal{H}_{v}^{(k)} := \operatorname{Im}\left(\mathcal{H}^{0}(\mathbf{R}p_{*}(DR_{Z/S}(\mathcal{G}_{Y|Z})(k))[n+1]) \longrightarrow \mathcal{H}_{v}\right) \qquad k \in \mathbb{Z}_{+}.$$

We remark that the natural inclusion $i: X \to Y$ induces a morphism $i_{\mathcal{D}}^*: \mathcal{H}_Y \to \mathcal{H}_X$ such that $i_{\mathcal{D}}^*(\mathcal{H}_Y^{(k)}) \subset \mathcal{H}_X^{(k)}$, and we have $\mathcal{H}_X^{(k)} = \partial_t^k \mathcal{H}_X^{(0)}$ for $\forall k \in \mathbb{Z}_+$.

30

No. 1]

(2.4) Proposition (cf. [2]). $\mathscr{H}_{Y}^{(k)}|_{s^{*}}$ is a holomorphic subbundle of H_{Y} . Furthermore, it coincides with the Hodge bundle \mathscr{P}^{n-k} (cf. (1.4)).

(2.5) Theorem. If the degree d of f is sufficiently large, then we have $i_{\mathcal{D}}^*(\mathcal{H}_Y) = \mathcal{H}_X$, $i_{\mathcal{D}}^*(\mathcal{H}_Y^{(k)}) = \mathcal{H}_X^{(k)}$ for $\forall k \in \mathbb{Z}_+$ and $\mathcal{K} := \text{Ker } i_{\mathcal{D}}^*$ is a free \mathcal{O}_s -Module of finite rank, i.e.

 $(2.5.1) \qquad 0 \longrightarrow \mathcal{K} = \oplus \mathcal{O}_s \longrightarrow \mathcal{H}_y \longrightarrow \mathcal{H}_x \longrightarrow 0$ is an exact sequence of \mathcal{D}_s -Modules.

We remark that $DR_s(\mathcal{K}) \subset R^n \bar{f}_* C_Y$ is the sheaf of invariant cycles of $\bar{f}: Y \to S$ and the exact sequence (2.5.1) does not split if there is an invariant cycle in H_x .

This theorem follows from the theory of microlocalization (cf. [4]) and the next lemma.

(2.6) Lemma (Scherk [7]). If d is sufficiently large, there is a $C\{t\}$ basis $\{w_i\}_{i=1,...,\mu}$ of $\mathcal{H}_{X,0}^{(0)}$ such that res $(w_i/(f-t))$ can be extended to holomorphic relative n-forms on $Y-\{0\}$.

Remark. The exact sequence (2.5.1) was found independently by F. Pham.

§ 3. The Gauss Manin system determines the Hodge filtration.

(3.1) Definition. We define a decreasing filtration $\{F_{\mathcal{H}}\}$ on $H^n(X_{\infty}, C)$ by

 $F_{\mathscr{H}}^{k} := \operatorname{Im} \left(\pi^{*}(\mathscr{H}_{X}^{(n-k)} \cap \mathscr{L}_{X}) \cap \widetilde{\mathscr{L}}_{X} \longrightarrow \widetilde{\mathscr{L}}_{X}(0) \simeq H^{n}(X_{\infty}, C) \right),$ where $\pi^{*}(\mathscr{H}_{X}^{(n-k)}) \cap \mathscr{L}_{X}$ is an $\mathcal{O}_{\tilde{S}}$ -submodule of $\widetilde{\mathscr{L}}_{X} \otimes_{\mathcal{O}_{\tilde{S}}} \mathcal{O}_{\tilde{S}}[\tilde{t}^{-1}]$ generated by $\pi^{*} w$ with $w \in \mathscr{H}_{X}^{(n-k)} \cap \mathscr{L}_{X}$.

(3.2) Theorem. We have $\{F_{\mathcal{H}}\} = \{F_{s_t}\}$, where $\{F_{s_t}\}$ is the Hodge filtration of Steenbrink on $H^n(X_{\infty}, \mathbb{C})$ (cf. (1.5)).

(3.3) Outline of the proof. The inclusion $F_{\mathcal{H}}^{k} \subset F_{St}^{k}$ is obvious from (1.4), (1.5), (2.4) and (2.5). To prove the reverse inclusion, we need two results: the duality of exponents due to Steenbrink (cf. [5] [9]) and the following lemma due to Kyoji Saito (cf. [11]).

(3.4) Lemma. Let $\{w_i\}$ be a $C\{t\}$ basis of $\mathcal{H}_{X,0}^{(0)}$ and let $\{\gamma_i(t)\}$ be a basis of multivalued horizontal sections of $\coprod_{t\in S^*} H_n(X_t, C)$. Then we have $\left(\det\left(\int_{\tau_i(t)} w_j\right)\right)^2 = t^{\mu(n-1)}g(t)$, where g(t) is a holomorphic function such that $g(0) \neq 0$.

The rest of the proof is almost the same as Varchenko [10, Lemma 2].

(3.5) Remarks. 1. If we define $\{'F'\}$ by $'F^k := \operatorname{Im}(\pi^* \mathscr{H}_{X}^{(n-k)} \cap \widetilde{\mathscr{L}}_{X} \to \widetilde{\mathscr{L}}_{X}(0))$, we have $'F^k \supset F^k_{\mathscr{H}}$. But the equality does not hold in general (e.g. $f = x^5 + y^5 + z^5 + x^3y^3$).

2. Varchenko defined a similar filtration $\{F_a\}$ (cf. [10]). But it is different from $\{F_{\mathcal{H}}\}$, if there exsists $k \leq n-1$ such that $h_{\lambda}^{k,n+1-k} \neq 0$ $(\lambda \neq 1)$ or $h_1^{k,n+2-k} \neq 0$ (cf. [6]).

(3.6) Corollary. Hodge number $h_{\lambda}^{p,q} := \dim_{\mathcal{C}} Gr_{F}^{p}Gr_{p+q}^{W}H^{n}(X_{\infty}, \mathcal{C})_{\lambda}$

and exponents (cf. [5]) are constant under μ -constant deformations (cf. [7]).

References

- Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta Math., 2, 103-161 (1970).
- [2] Brylinski, J. L.: Modules holonomes à singularités régulières et filtration de Hodge, I (preprint).
- [3] Deligne, P.: Equations différentielles à points singuliers réguliers. Lect. Notes in Math., vol. 163, Springer (1970).
- [4] Pham, F.: Singularités des systèmes différentiels de Gauss-Manin. Progress in Math., 2, Birkhäuser (1979).
- [5] Saito, M.: On the exponents and the geometric genus of an isolated hypersurface singularity (to appear in Proceedings of the Symposia in pure Math., 40, A.M.S.).
- [6] Scherk, J.: A note on two local Hodge filtrations (to appear).
- [7] Scherk, J., and Steenbrink, J.: On the mixed Hodge structure on the cohomology of the Milnor fiber (preprint).
- [8] Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. math., 22, 211-319 (1973).
- [9] Steenbrink, J. H. M.: Mixed Hodge structure on the vanishing cohomology. Proceedings of the Nordic Summer School, Oslo, pp. 525-563 (1976).
- [10] Varchenko, A.: Asymptotics of holomorphic forms define mixed Hodge structure. Dokl. Akad. Nauk. SSSR, 255(5), 1035-1038 (1980).
- [11] ——: Asymptotic mixed Hodge structure on vanishing cohomology. Izv. Akad. Nauk. SSSR, Ser. Math., 45(3), 540-591 (1981).