80. A Note on Modularity in Atomistic Lattices

By Shûichirô Maeda
Department of Mathematics, Ehime University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

Let L be an atomistic lattice ([1], (7.1)), and let A, B be subsets of L. If (a, b) is a modular pair (resp. dual-modular pair) for every $a \in A$ and $b \in B$, we write $(A, B) M$ (resp. $\left.(A, B) M^{*}\right)$. We denote by Ω the set of atoms of L, and we put

$$
\Omega^{n}=\left\{p_{1} \vee \cdots \vee p_{n} ; p_{i} \in \Omega\right\} \quad(n=1,2, \cdots)
$$

Evidently, $\Omega^{1}=\Omega$ and $\Omega^{n} \subset \Omega^{n+1}$. Moreover, we put

$$
F=\bigcup_{n=1}^{\infty} \Omega^{n} \cup\{0\} .
$$

($L, F) M$ means that L is finite-modular ([1], (9.1)), and each of $(\Omega, L) M$ and $(\Omega, L) M^{*}$ is equivalent to that L has the covering property ([1], (7.6)). If $A_{1} \subset A_{2}$ and $B_{1} \subset B_{2}$, then evidently $\left(A_{2}, B_{2}\right) M$ implies $\left(A_{1}, B_{1}\right) M$, and $\left(A_{2}, B_{2}\right) M^{*}$ implies $\left(A_{1}, B_{1}\right) M^{*}$.

In the previous paper [3], the following equivalences and nontrivial implications were proved:
(1) For any $A \subset L,(A, L) M \Longleftrightarrow(A, L) M^{*},(A, F) M \Longleftrightarrow(A, F) M^{*}$, $\left(A, \Omega^{n}\right) M \Longleftrightarrow\left(A, \Omega^{n-1}\right) M^{*}(n \geq 2) . \quad((L, \Omega) M$ always holds.)
(2) $(L, F) M^{*} \Longrightarrow(F, L) M^{*}$.
(3) $\quad\left(L, \Omega^{n}\right) M^{*} \Longleftrightarrow(L, F) M^{*}$ for $n \geq 1$.
(4) $\quad\left(F, \Omega^{n}\right) M^{*} \Longleftrightarrow(F, F) M^{*}$ for $n \geq 1$.
(5) $\quad\left(\Omega^{n}, F\right) M^{*} \Longleftrightarrow(F, F) M^{*}$ for $n \geq 2$.
(6) $\quad\left(\Omega^{n}, \Omega\right) M^{*} \Longleftrightarrow\left(\Omega^{n-1}, \Omega^{2}\right) M^{*} \Longleftrightarrow \cdots \Longleftrightarrow\left(\Omega^{2}, \Omega^{n-1}\right) M^{*}$ for $n \geq 3$.
(7) $\left(\Omega^{2}, \Omega^{n-1}\right) M^{*} \Longrightarrow\left(\Omega, \Omega^{n}\right) M^{*}$ for $n \geq 2$.

Moreover, it was shown by examples that the implications (2) and (7) and the following implications are not reversible:

$$
\begin{aligned}
& \left(\Omega^{2}, L\right) M^{*} \Longrightarrow\left(\Omega^{2}, F\right) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega^{2}, \Omega^{n}\right) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega^{2}, \Omega\right) M^{*}, \\
& (\Omega, L) M^{*} \Longrightarrow(\Omega, F) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega, \Omega^{n}\right) M^{*} \Longrightarrow \cdots \Longrightarrow(\Omega, \Omega) M^{*}, \\
& \left(\Omega^{2}, L\right) M^{*} \Longrightarrow(\Omega, L) M^{*}, \quad\left(\Omega^{2}, F\right) M^{*} \Longrightarrow(\Omega, F) M^{*} .
\end{aligned}
$$

But, it remained open whether the following implications are reversible or not:

$$
(F, L) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega^{n}, L\right) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega^{2}, L\right) M^{*} .
$$

In this paper, we shall prove that these implications are reversible, that is,

Theorem. For an atomistic lattice L,
(8) $\quad\left(\Omega^{n}, L\right) M^{*} \Longleftrightarrow(F, L) M^{*}$ for $n \geq 2$.

To prove this theorem, we prepare the following lemma which
follows from [1], (1.5) by the duality.
Lemma. Let a, b and c be elements of a lattice L.
(i) If $(a, b) M^{*}$ and $(a \vee b, c) M^{*}$ then $\left(a_{1}, b \vee c\right) M^{*}$ for any a_{1} $\in L[a, a \vee c]$.
(ii) If $(a, b) M^{*}$ then $\left(a_{1}, b_{1}\right) M^{*}$ for any $a_{1} \in L[a, a \vee b]$ and b_{1} $\in L[b, a \vee b]$.

Proof of the theorem. It suffices to prove that $\left(\Omega^{n}, L\right) M^{*}$ implies $\left(\Omega^{n+1}, L\right) M^{*}$ for $n \geq 2$. Assume $\left(\Omega^{n}, L\right) M^{*}$, and let $u \in \Omega^{n+1}, a \in L$. We put $u=p_{0} \vee p_{1} \vee \cdots \vee p_{n}$ where $p_{i} \in \Omega$. If $p_{i} \leq \alpha \vee p_{0} \vee p_{1} \vee \cdots \vee p_{i-1}$ for some $i(0 \leq i \leq n)$, then putting $v=p_{0} \vee p_{1} \vee \cdots \vee p_{i-1} \vee p_{i+1} \vee \cdots \vee p_{n}$, we have $v \in \Omega^{n}$ and $a \vee v=a \vee u$. Since $(v, a) M^{*}$ by the assumption and since $u \in L[v, v \vee a]$, we have $(u, a) M^{*}$ by (ii) of the above lemma. Hence, we may assume that
(*) $\quad p_{i} \npreceq a \vee p_{0} \vee p_{1} \vee \cdots \vee p_{i-1} \quad$ for every $i=0,1, \cdots, n$.
Since $\left(\Omega^{n}, L\right) M^{*}$ implies the covering property, L is an $A C$-lattice ([1], (8.7)) and hence $L[a, a \vee u]$ is also an $A C$-lattice by [1], (8.18). Hence, for every $x \in L[a, a \vee u]$ we can define the height $h(x)$ of x in $L[a, a \vee u]$ ([1], (8.5)). It follows from (*) that $h(a \vee u)=n+1$. Now, we shall show that
(**)

$$
(c \wedge u) \vee a=c
$$

for every $c \in L[a, a \backslash u]$. First, we assume $h(c) \leq n-1$. We put $v=p_{1}$ $\vee \cdots \vee p_{n}$ and $v^{\prime}=\left(p_{0} \vee c\right) \wedge v$. If $p_{0} \vee c \geq v$, then we would have $p_{0} \vee c$ $\geq p_{0} \vee v \vee a=a \vee u$ and then $n+1=h(a \vee u) \leq h\left(p_{0} \vee c\right) \leq h(c)+1 \leq n$, a contradiction. Hence, $p_{0} \vee c \nsupseteq v$ and hence $v^{\prime}<v$. We have $v^{\prime} \in \Omega^{n-1}$ since $v \in \Omega^{n}$, and hence $p_{0} \vee v^{\prime} \in \Omega^{n}$. Using $\left(p_{0} \vee v^{\prime}, a\right) M^{*}$ and $\left(v, p_{0}\right.$ $\vee a) M^{*}$, we obtain

$$
\begin{aligned}
(c \wedge u) \vee a & =\left(c \wedge\left(p_{0} \vee v\right)\right) \vee a \geq\left(c \wedge\left(p_{0} \vee v^{\prime}\right)\right) \vee a=c \wedge\left(p_{0} \vee v^{\prime} \vee a\right) \\
& \left.=c \wedge\left(\left(p_{0} \vee c\right) \wedge v\right) \bigvee p_{0} \vee a\right)=c \wedge\left(p_{0} \vee c\right) \wedge\left(v \vee p_{0} \vee a\right) \\
& =c \wedge(u \bigvee a)=c \geq(c \wedge u) \vee a,
\end{aligned}
$$

which implies (**). Next, if $h(c)=n$, then there exist $c_{1}, c_{2} \in L[a, a \vee u]$ such that $h\left(c_{1}\right)=n-1, h\left(c_{2}\right)=1$ and $c=c_{1} \vee c_{2}$. Since $n-1 \geq 1,\left(c_{i} \wedge u\right)$ $\vee a=c_{i}(i=1,2)$ as above. Hence,

$$
(c \wedge u) \vee a \geq\left(c_{1} \wedge u\right) \vee\left(c_{2} \wedge u\right) \vee a=c_{1} \vee c_{2}=c \geq(c \wedge u) \vee a
$$

If $h(c)=n+1$, then $(* *)$ holds since $c=a \vee u$.
If $d \geq a$, then putting $c=d \wedge(a \vee u)$, we have $c \in L[a, a \vee u]$ and $c \wedge u=d \wedge u$. Hence, by (**) we have

$$
(d \wedge u) \vee a=(c \wedge u) \vee a=c=d \wedge(u \vee a)
$$

Therefore ($u, a) M^{*}$ holds.
Remark. In [3], the six statements (2)-(7) were proved by the aid of the concept of P-relation, introduced in [2]. We remark that three of them directly follow from (i) of the above lemma. We can show the following statement:
(9) For any $A \subset L,\left(A \vee \Omega_{0}, \Omega^{n-1}\right) M^{*} \Longrightarrow\left(A, \Omega^{n}\right) M^{*}(n \geq 2)$, where $A \vee \Omega_{0}=\{a \vee p ; a \in A, p \in \Omega \cup\{0\}\}$.
In fact, if $a \in A$ and $u \in \Omega^{n}$, then putting $u=p \vee v$ with $p \in \Omega$ and $v \in \Omega^{n-1}$, we have $(a, p) M^{*}$ and $(a \vee p, v) M^{*}$ by $\left(A \vee \Omega_{0}, \Omega^{n-1}\right) M^{*}$, and hence ($a, p \vee v$) M^{*} by the lemma.

Now, it is easy to verify that (3) and (4) follows from (9), since if $A=L$ or F then $A \vee \Omega_{0}=A$. Moreover, it follows from (9) that
$\left(\Omega^{n}, \Omega\right) M^{*} \Longrightarrow\left(\Omega^{n-1}, \Omega^{2}\right) M^{*} \Longrightarrow \cdots \Longrightarrow\left(\Omega^{2}, \Omega^{n-1}\right) M^{*} \Longrightarrow\left(\Omega, \Omega^{n}\right) M^{*}$, which includes (7) and a half of (6).

References

[1] F. Maeda and S. Maeda: Theory of Symmetric Lattices. Springer-Verlag, Berlin (1970).
[2] S. Maeda: On finite-modular atomistic lattices. Algebra Universalis, 12, 76-80 (1981).
[3] -: On modularity in atomistic lattices (to appear in Colloq. Math. Soc. János Bolyai, 33 (Contributions to lattice theory)).

