78. On Integral Transformations Associated with a Certain Riemannian Metric

By Atsushi Inoue*) and Yoshiaki Maeda**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

§ 1. Statement of the result. Let (M, g) be a complete, connected and simply connected Riemannian manifold of $\operatorname{dim} M=m$. We consider the following integral transformation with a parameter $t>0$.

$$
\left(H_{t} f\right)(x)=(2 \pi t)^{-m / 2} \int_{M} \rho(x, y) e^{-d^{2}(x, y) / 2 t} f(y) d_{g}(y)
$$

where $d_{g}(y)=g(y)^{1 / 2} d y, g(y)=\operatorname{det} g_{i j}(y), d(x, y)$ denotes the Riemannian distance between x, y and $\rho(x, y)=\left|\operatorname{det}\left(d \operatorname{Exp}_{x}^{-1}\right)_{y}\right|^{1 / 2}$ with Exp_{x} standing for the exponential mapping at x.

We assume the following :
(A.1) (M, g) has a non-positively pinched sectional curvature, i.e. there exists a constant $k>0$ such that for any 2 -plane π, the sectional curvature K_{π} satisfies $-k^{2} \leqq K_{\pi} \leqq 0$.
(A.2) There exist constants C_{1}, C_{2} such that for any x, y and $z \in M$, we have

$$
\begin{aligned}
& \left|\Delta^{(z)} \rho(x, z)\right| \leqq C_{1}, \\
& \left|\Delta^{(z)} \rho(x, z)-\Delta^{(z)} \rho(y, z)\right| \leqq C_{2} d(x, y)
\end{aligned}
$$

where $\Delta^{(z)}$ is the Laplace-Beltrami operator acting on a function of z, i.e.,

$$
\Delta^{(z)} f(z)=g(z)^{-1 / 2} \sum_{i, j=1}^{m}\left(\partial / \partial z^{i}\right)\left(g(z)^{1 / 2} g^{i j}(z)\left(\partial f(z) / \partial z^{j}\right)\right)
$$

Theorem. Let (M, g) be a Riemannian manifold satisfying above conditions. Then, we have the following for an arbitrary number $T>0$.
(a) The integral transformation H_{t} defines a bounded linear operator in $L^{2}\left(M, d_{g}\right)$ for $0<t<T$.
(b) $s-\lim _{t \rightarrow 0+} H_{t} f=f^{\prime}$ for $f \in L^{2}\left(M, d_{g}\right)$.
(c) There exists a constant C_{3} such that

$$
\left\|H_{t+s} f-H_{t} H_{s} f\right\| \leqq C_{3}\left((t+s)^{3 / 2}-t^{3 / 2}+s^{3 / 2}\right)\|f\|
$$

for $0<t, s, t+s<T$ and $f \in L^{2}(M, g)$.
(d) There exists a limit in operator norm $\lim _{k \rightarrow \infty}\left(H_{t / k}\right)^{k}$ for any $t>0$, denoted by \boldsymbol{H}_{t}, which forms with $\boldsymbol{H}_{0}=I d$ a C^{0}-semi group in

[^0]$L^{2}\left(M, d_{g}\right)$ whose infinitesimal generator is given by
$$
\partial\left(\boldsymbol{H}_{t} f\right)(x) /\left.\partial t\right|_{t=0}=((1 / 2) \Delta-(1 / 12) R(x)) f(x) \quad \text { for } f \in C_{0}^{\infty}(M)
$$
where $R(x)$ is the scalar curvature associated with the Riemannian metric g.

Remarks. (1) In our case, $d^{2}(x, y) / 2 t$ equals to $S(t ; x, y)$ where

$$
\left\{\begin{array}{l}
S(t ; x, y)=\inf _{r} \int_{0}^{t} L(\gamma(\tau), \dot{\gamma}(\tau)) d \tau ; \gamma \in C_{t ; x, y}, \quad(\dot{\gamma}(\tau)=(d \gamma(\tau) / d \tau)), \\
C_{t ; x, y}=\{\gamma(\cdot) \in C([0, t] \rightarrow M): \text { absolutely continuous in } \tau \\
\quad \text { with } \gamma(0)=y, \gamma(t)=x\}, \\
L(\gamma, \dot{\gamma})=2^{-1} \sum_{i, j=1}^{m} g_{i j}(\gamma) \dot{\gamma}^{i} \dot{\gamma}^{j}
\end{array} \quad \text { for }(\gamma, \dot{\gamma}) \in T_{x} M . \quad .\right.
$$

(2) If (M, g) is a manifold of the constant negative curvature, then the function ρ satisfies conditions of (A.2).
(3) If we replace ρ with 1 , then it seems difficult to prove (c) and (d). We are not sure whether it is possible or not.

Detailed proof will appear in the forthcoming paper.
§ 2. Sketch of the proof. Put $k(t ; x, y)=(2 \pi t)^{-m / 2} \rho(x, y) e^{-d^{2}(x, y) / 2 t}$.
Lemma 1. Under Assumption (A.1), there exists a constant C_{4} independent of $x, y \in M$ such that for any $0<t<T$, we have

$$
\int_{M} k(t ; x, y) d_{9}(x) \leqq C_{4} \quad \text { and } \quad \int_{M} k(t ; x, y) d_{9}(y) \leqq C_{4} .
$$

To prove these, we use the normal polar coordinate at y or x. By using Rauch's comparison theorem, we may estimate the kernel $k(t ; x, y)$ appropriately. Combining this with Schwarz's inequality, we prove (a) easily (see Kobayashi-Nomizu [3] for geometrical terms).

To prove (b) under Assumption (A.1), we take $f \in C_{0}^{\infty}(M)$. Introducing the cut off function $\chi(x), \chi(x)=1$ for $d(x$, supp $f) \leqq 2 L$ and $=0$ for $d(x, \operatorname{supp} f)>2 L$ with L fixed suitably, we may prove the following :

Lemma 2. For $f \in C_{0}^{\infty}(M)$, we have
(*)

$$
(* *)
$$

$$
\begin{aligned}
& \lim _{t \rightarrow 0+}\left\|\chi\left(H_{t} f\right)-f\right\|=0 \\
& \lim _{t \rightarrow 0+}\left\|(1-\chi) H_{t} f\right\|=0
\end{aligned}
$$

(*) follows from direct computations for any L. By using the method of oscillatory integrals for sufficiently large L, we prove (**). Analogous procedure was already presented in Fujiwara [2].

For any $0<t, s, t+s<T$ and $f \in C_{0}^{\infty}(M)$, we have

$$
\left(H_{t} H_{s} f\right)(x)-\left(H_{t+s} f\right)(x)=\int_{M} h(t, s ; x, y) f(y) d_{g}(y)
$$

where

$$
h(t, s ; x, y)=\int_{0}^{s}\left\{\frac{d}{d \sigma} \int k(t+s-\sigma ; x, z) k(\sigma ; z, y) d_{g}(z)\right\} d \sigma .
$$

Lemma 3. Under Assumptions (A.1) and (A.2), we have

$$
\begin{aligned}
h(t, s ; x, y)=\int_{0}^{s} d \sigma[& (2 \pi(t+s-\sigma))^{-m / 2}(2 \pi \sigma)^{-m / 2} \int_{M}\left(\Delta^{(z)} \rho(x, z)-\Delta^{(z)} \rho(y, z)\right) \\
& \left.\times e^{-\left(d^{2}(x, z) / 2(t+s-\sigma)\right)-\left(d^{2}(y, z) / 2 \sigma\right)} d_{g}(z)\right] .
\end{aligned}
$$

Moreover, there exists a constant C_{5} such that for any $0<t, s, t+s<T$, we have

$$
\begin{aligned}
& \int_{M}|h(t, s ; x, y)| d_{\theta}(y) \leqq C_{5}\left((t+s)^{3 / 2}-t^{3 / 2}+s^{3 / 2}\right) \\
& \int_{M}|h(t, s ; x, y)| d_{9}(x) \leqq C_{5}\left((t+s)^{3 / 2}-t^{3 / 2}+s^{3 / 2}\right) .
\end{aligned}
$$

Rewrite the above integrals in normal coordinate. Using Toponogov's comparison theorem and Hamilton-Jacobi equation for $S(t ; x, y)$, we have the desired results.

From above lemma, we may prove (c) and construct $H_{t} f$ by using the analogous method in Fujiwara [2]. See also Chernoff [1].

Lemma 4. Under Assumptions (A.1) and (A.2), we have, for any $f \in C_{0}^{\infty}(M)$,

$$
\frac{\partial}{\partial t}\left(H_{t} f\right)(x)=(1 / 2)\left(H_{t} \Delta f\right)(x)-(1 / 2)\left(H_{t} R f\right)(x)+\left(G_{t} f\right)(x),
$$

where

$$
\begin{aligned}
&\left(G_{t} f\right)(x)=(2 \pi t)^{-m / 2} \int_{M}\left((1 / 2) \Delta^{(x)} \rho(x, y)--(R(x) / 12)\right) \\
& \times e^{-d 2(x, y) / 2 t} f(y) d_{g}(y)
\end{aligned}
$$

Moreover, we have the estimate $\left\|G_{t} f\right\|=O\left(t^{1 / 2}\right)\|f\|$ for $f \in C_{0}^{\infty}(M)$.
There are shown by direct computations combined with the fact $\left.\Delta^{(x)} \rho(x, y)\right|_{y=x}=R(x) / 6$. This lemma combined with (b) gives (d).

References

[1] P. R. Chernoff: Product formulas, non-linear semi-groups, and addition of unbounded operators. Memoirs of Amer. Math. Soc., no. 140 (1970).
[2] D. Fujiwara: A construction of the fundamental solution for the Schrödinger equation. J. D'Analyse Math., 35, 41-96 (1979).
[3] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Wiley, New York (1963).

[^0]: *) Department of Mathematics, Tokyo Institute of Technology.
 **) Department of Mathematics, Keio University.

