75. Disjointness of Sequences $\left[\alpha_{i} n+\beta_{i}\right], i=1,2$

By Ryozo Morikawa
Department of Mathematics, Nagasaki University
(Communicated by Shokichi Iyanaga, M. J. A., June 15, 1982)

1. Introduction. We shall give in this note a criterion for disjointness of two sequences $\left[\alpha_{1} n+\beta_{1}\right]$ and $\left[\alpha_{2} n+\beta_{2}\right]\left(\alpha_{1}, \alpha_{2}>0\right)$ where $[x]$ denotes the greatest integer $\leqq x$, and n runs through the set N of positive integers. Such criterion is known if either α_{1} or α_{2} is irrational (cf. [1]). But in case α_{1} and α_{2} are both rational numbers, complete answer has not yet been known, although there are some investigations (cf. [1], [2]).

In the following, $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} have the usual meanings. (a, b) means the greatest divisor of a and b.

It is easy to see the following two facts: (1) If $\alpha=q / a$ where q and $a \in N$ and $(q, \alpha)=1$, the effect of $\beta \in \boldsymbol{R}$ on the sequence $[\alpha n+\beta]$ depends only on $[\alpha \beta]$. Hence, without changing the sequence $[\alpha n+\beta]$, β can be replaced by a rational number b / a whose denominator is a.
(2) If both α_{1} and $\alpha_{2} \in \boldsymbol{Q}$, two sequences $\left[\alpha_{i} n+\beta_{i}\right](i=1,2), n \in N$ are disjoint if and only if two sets $\left\{\left[\alpha_{i} n+\beta_{i}\right]: n \in \boldsymbol{Z}\right\}(i=1,2)$ are disjoint.

So let us consider now the sets $\left\{\left[\left(q_{i} n+b_{i}\right) / a_{i}\right]: n \in \boldsymbol{Z}\right\}(i=1,2)$ with $\left(q_{1}, a_{1}\right)=\left(q_{2}, a_{2}\right)=1$, which we shall denote with $S\left(q_{i}, a_{i}, b_{i}\right)(i=1,2)$. We put furthermore $\left(q_{1}, q_{2}\right)=q,\left(a_{1}, a_{2}\right)=a, a_{i}=\alpha u_{i}(i=1,2)$.

Then we have
Theorem 1. Notations being as above, consider q_{1}, q_{2}, a_{1} and a_{2} as given. Two sets $S\left(q_{1}, a_{1}, b_{1}\right)$ and $S\left(q_{2}, a_{2}, b_{2}\right)$ are disjoint with suitable two integers b_{1} and b_{2} if and only if
(1)

$$
x u_{1}+y u_{2}=q-2 u_{1} u_{2}(a-1)
$$

holds with some (x, y) $\in N \times N$.
In case this condition is satisfied, we can take a solution (x_{0}, y_{0}) of (1) such that $1 \leqq y_{0} \leqq u_{1}$. Furthermore if $x_{0}>u_{2}$, define the numbers x_{1} and y_{1} by $x_{1}=x_{0}-u_{2}$ and $y_{1}=u_{1}-y_{0}$.

Theorem 2. Assume that $\left(q_{i}, a_{i}\right)(i=1,2)$ satisfy the condition of Theorem 1. Then $S\left(q_{i}, a_{i}, b_{i}\right)(i=1,2)$ are disjoint if and only if

$$
u_{1} b_{2}-u_{2} b_{1} \in\left(E_{1} \cup E_{2}\right) \quad(\bmod q),
$$

where $E_{1}=\left\{u_{1} X+u_{2} Y+u_{1} u_{2}(a-1): 0 \leqq X \leqq x_{0}-1,1 \leqq Y \leqq y_{0}\right\}$ and E_{2} $=\left\{u_{1} X+u_{2} Y+u_{1} u_{2}(a-1): 0 \leqq X \leqq x_{1}-1, y_{0}+1 \leqq Y \leqq u_{1}\right\}$. (In case $x_{0} \leqq u_{2}$, we define $E_{2}=\phi$.)

In the following we shall sketch the proof of Theorems 1 and 2. Details will appear elsewhere. Our results can be applied to the theory
of "eventually covering families" (cf. [3]).
2. Notations and definitions. (i) If $f \in Z$ and $h \in N$ or 0 , we write $[f, f+h]=\{f, f+1, \cdots, f+h\}$. This set is called a segment of Z of length $h+1$.
(ii) For $t \in Z$ and $x \in Z$, we denote $T_{t}\langle x\rangle=t+x$. This operation is applied also to any subset of Z.
(iii) Let $\left(q_{i}, a_{i}\right)(i=1,2)$ be given as in the introduction, which we consider as fixed. Consequently, $q=\left(q_{1}, q_{2}\right)$ is also considered as given. ρ denotes the canonical map $\rho: \boldsymbol{Z} \rightarrow \boldsymbol{Z} /(q)$, and σ the map from \boldsymbol{Z} to \boldsymbol{C} defined by $\sigma(r)=\exp (2 \pi i r / q)$ for $r \in \boldsymbol{Z}$. We put $C(q)=\sigma(Z)$. This is the set of q roots of unit. The σ image of a segment of Z is called a segment of $C(q)$, the length of which is defined as its cardinality ($\leqq q$).
3. Sketch of the proof of Theorems 1 and 2. Let $q_{i}, a_{i}, b_{i}, u_{i}$ ($i=1,2$), q and a be as in the introduction. Besides these, we fix the number b_{1} to be -1 , and investigate a condition for b_{2} such that $S\left(q_{1}, a_{1},-1\right) \cap S\left(q_{2}, a_{2}, b_{2}\right)=\phi$.

Put $A=S\left(q_{1}, a_{1},-1\right)$ and $B=S\left(q_{2}, a_{2}, b_{2}\right)$. Now we divide A into u_{1} subsets as follows. Take $c \in Z$ such that $c q_{1} \equiv-1\left(\bmod u_{1}\right)$. Put A_{j} $=S\left(q_{1} u_{1}, a_{1}, q_{1} c j-1\right)\left(0 \leqq j \leqq u_{1}-1\right)$. Then $A=\bigcup_{j=0}^{u_{1}-1} A_{j}$ (disjoint union). We put $\boldsymbol{b}(-1)=\left\{b_{2} \in Z: A \cap B=\phi\right\}$ and $\boldsymbol{v}_{j}=\left\{b_{2} \in Z: A_{j} \cap B \neq \phi\right\}\left(0 \leqq j \leqq u_{1}\right.$ -1). Then obviously $\boldsymbol{b}(-1)=\boldsymbol{Z}-\bigcup_{j=0}^{u_{1}-1} \boldsymbol{v}_{j}$.

Lemma 1. We take $t \in N$ such that $u_{1} t \equiv u_{2}(\bmod q)$. Then we have $\rho\left(\boldsymbol{v}_{0}\right)=\rho\left(\left[-a_{2}, u_{2}(a-1)-1\right]\right)$ and $\boldsymbol{v}_{j}=T_{j t}\left\langle\boldsymbol{v}_{0}\right\rangle\left(1 \leqq j \leqq u_{1}-1\right)$.

Lemma 1 implies that $\sigma\left(v_{j}\right)$ is a segment of $C(q)$ starting from $P(j)=\sigma\left(-a_{2}+j t\right)$. Since $\left(u_{1}, u_{2}\right)=1$, we can take two integers x_{0} and y_{0} such that $q-2 u_{1} u_{2}(a-1)=x_{0} u_{1}+y_{0} u_{2}$ and $1 \leqq y_{0} \leqq u_{1}$.

Lemma 2. Put $J_{1}=\left[0, y_{0}-1\right]$ and $J_{2}=\left[y_{0}, u_{1}-1\right]$. Then the following statements hold:
(i) If $j \in J_{1}$, then $\sigma\left(x_{0}+u_{2}(2 a-1)\right) P(j)=P\left(j+u_{1}-y_{0}\right)$.
(ii) If $j \in J_{2}$, then $\sigma\left(x_{0}+2 u_{2}(a-1)\right) P(j)=P\left(j-y_{0}\right)$.

Lemma 3. If $x_{0}>u_{2}$, then $\sigma(b(-1))$ is composed of y_{0} segments of $C(q)$ with the equal length x_{0}, and of $u_{1}-y_{0}$ segments of $C(q)$ with the equal length $x_{0}-u_{2}$. If $1 \leqq x_{0} \leqq u_{2}$, then $\sigma(b(-1))$ is composed of y_{0} segments of $C(q)$ with the equal length x_{0}. If $x_{0} \leqq 0$, then $b(-1)=\phi$.

The above three lemmas lead to
Theorem 3. Assume that $\left(q_{i}, a_{i}\right)(i=1,2)$ satisfy the condition of Theorem 1. Let the pairs $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be defined as in the introduction, and $t \in N$ as in Lemma 1. Then $S\left(q_{1}, a_{1},-1\right) \cap S\left(q_{2}, a_{2}, b_{2}\right)=\phi$ holds if and only if $\rho\left(b_{2}\right) \in \rho\left(G_{1} \cup G_{2}\right)$, where

$$
G_{1}=\cup T_{k t}\left\langle\left[a_{2}-u_{2}, a_{2}-u_{2}+x_{0}-1\right]\right\rangle \quad\left(0 \leqq k \leqq y_{0}-1\right)
$$

and

$$
G_{2}=\cup T_{r t}\left\langle\left[-x_{0}-a_{2}+u_{2},-a_{2}-1\right]\right\rangle \quad\left(0 \leqq r \leqq y_{1}-1\right)
$$

(If $x_{0} \leqq u_{2}$, we take $G_{2}=\phi$.)
Through some calculations, we can deduce Theorems 1 and 2 from above lemmas and Theorem 3.

References

[1] A. S. Fraenkal: The bracket function and complementary set of integers. Can. J. Math., 21, 6-27 (1969).
[2] Ivan Niven: Diophantine Approximations. Interscience, New York (1963).
[3] R. Morikawa: On eventually covering families generated by the bracket function (to appear in Bull. Liberal Arts, Nagasaki Univ. (Natural Science), 23).

