75. Disjointness of Sequences $[\alpha_i n + \beta_i]$, i=1, 2

By Ryozo Morikawa

Department of Mathematics, Nagasaki University

(Communicated by Shokichi IYANAGA, M. J. A., June 15, 1982)

1. Introduction. We shall give in this note a criterion for disjointness of two sequences $[\alpha_1 n + \beta_1]$ and $[\alpha_2 n + \beta_2]$ $(\alpha_1, \alpha_2 > 0)$ where [x] denotes the greatest integer $\leq x$, and n runs through the set N of positive integers. Such criterion is known if either α_1 or α_2 is irrational (cf. [1]). But in case α_1 and α_2 are both rational numbers, complete answer has not yet been known, although there are some investigations (cf. [1], [2]).

In the following, Z, Q, R and C have the usual meanings. (a, b) means the greatest divisor of a and b.

It is easy to see the following two facts: (1) If $\alpha = q/a$ where qand $a \in N$ and (q, a) = 1, the effect of $\beta \in \mathbf{R}$ on the sequence $[\alpha n + \beta]$ depends only on $[a\beta]$. Hence, without changing the sequence $[\alpha n + \beta]$, β can be replaced by a rational number b/a whose denominator is a. (2) If both α_1 and $\alpha_2 \in \mathbf{Q}$, two sequences $[\alpha_i n + \beta_i]$ (i=1,2), $n \in N$ are disjoint if and only if two sets $\{[\alpha_i n + \beta_i] : n \in \mathbf{Z}\}$ (i=1,2) are disjoint.

So let us consider now the sets $\{[(q_in+b_i)/a_i]: n \in \mathbb{Z}\}$ (i=1,2) with $(q_1, a_1)=(q_2, a_2)=1$, which we shall denote with $S(q_i, a_i, b_i)$ (i=1,2). We put furthermore $(q_1, q_2)=q$, $(a_1, a_2)=a$, $a_i=au_i$ (i=1,2).

Then we have

Theorem 1. Notations being as above, consider q_1 , q_2 , a_1 and a_2 as given. Two sets $S(q_1, a_1, b_1)$ and $S(q_2, a_2, b_2)$ are disjoint with suitable two integers b_1 and b_2 if and only if

(1) $xu_1+yu_2=q-2u_1u_2(a-1)$ holds with some $(x, y) \in N \times N$.

In case this condition is satisfied, we can take a solution (x_0, y_0) of (1) such that $1 \leq y_0 \leq u_1$. Furthermore if $x_0 > u_2$, define the numbers x_1 and y_1 by $x_1 = x_0 - u_2$ and $y_1 = u_1 - y_0$.

Theorem 2. Assume that (q_i, a_i) (i=1, 2) satisfy the condition of Theorem 1. Then $S(q_i, a_i, b_i)$ (i=1, 2) are disjoint if and only if $u_1b_2 - u_2b_1 \in (E_1 \cup E_2) \pmod{q}$,

where $E_1 = \{u_1X + u_2Y + u_1u_2(a-1): 0 \le X \le x_0 - 1, 1 \le Y \le y_0\}$ and $E_2 = \{u_1X + u_2Y + u_1u_2(a-1): 0 \le X \le x_1 - 1, y_0 + 1 \le Y \le u_1\}$. (In case $x_0 \le u_2$, we define $E_2 = \phi$.)

In the following we shall sketch the proof of Theorems 1 and 2. Details will appear elsewhere. Our results can be applied to the theory of "eventually covering families" (cf. [3]).

2. Notations and definitions. (i) If $f \in \mathbb{Z}$ and $h \in N$ or 0, we write $[f, f+h] = \{f, f+1, \dots, f+h\}$. This set is called a *segment* of \mathbb{Z} of length h+1.

(ii) For $t \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we denote $T_t \langle x \rangle = t + x$. This operation is applied also to any subset of \mathbb{Z} .

(iii) Let (q_i, a_i) (i=1, 2) be given as in the introduction, which we consider as fixed. Consequently, $q=(q_1, q_2)$ is also considered as given. ρ denotes the canonical map $\rho: \mathbb{Z} \to \mathbb{Z}/(q)$, and σ the map from \mathbb{Z} to \mathbb{C} defined by $\sigma(r) = \exp(2\pi i r/q)$ for $r \in \mathbb{Z}$. We put $C(q) = \sigma(\mathbb{Z})$. This is the set of q roots of unit. The σ image of a segment of \mathbb{Z} is called a segment of C(q), the length of which is defined as its cardinality $(\leq q)$.

3. Sketch of the proof of Theorems 1 and 2. Let q_i , a_i , b_i , u_i (i=1,2), q and a be as in the introduction. Besides these, we fix the number b_1 to be -1, and investigate a condition for b_2 such that $S(q_1, a_1, -1) \cap S(q_2, a_2, b_2) = \phi$.

Put $A = S(q_1, a_1, -1)$ and $B = S(q_2, a_2, b_2)$. Now we divide A into u_1 subsets as follows. Take $c \in Z$ such that $cq_1 \equiv -1 \pmod{u_1}$. Put A_j $= S(q_1u_1, a_1, q_1cj-1) \ (0 \leq j \leq u_1-1)$. Then $A = \bigcup_{j=0}^{u_1-1} A_j$ (disjoint union). We put $b(-1) = \{b_2 \in Z : A \cap B = \phi\}$ and $v_j = \{b_2 \in Z : A_j \cap B \neq \phi\} \ (0 \leq j \leq u_1$ -1). Then obviously $b(-1) = Z - \bigcup_{j=0}^{u_1-1} v_j$.

Lemma 1. We take $t \in N$ such that $u_1 t \equiv u_2 \pmod{q}$. Then we have $\rho(\boldsymbol{v}_0) = \rho([-a_2, u_2(a-1)-1])$ and $\boldsymbol{v}_j = T_{ji} \langle \boldsymbol{v}_0 \rangle$ $(1 \leq j \leq u_1-1)$.

Lemma 1 implies that $\sigma(v_j)$ is a segment of C(q) starting from $P(j) = \sigma(-a_2 + jt)$. Since $(u_1, u_2) = 1$, we can take two integers x_0 and y_0 such that $q - 2u_1u_2(a-1) = x_0u_1 + y_0u_2$ and $1 \le y_0 \le u_1$.

Lemma 2. Put $J_1 = [0, y_0 - 1]$ and $J_2 = [y_0, u_1 - 1]$. Then the following statements hold:

(i) If $j \in J_1$, then $\sigma(x_0 + u_2(2a-1))P(j) = P(j+u_1-y_0)$.

(ii) If $j \in J_2$, then $\sigma(x_0+2u_2(a-1))P(j)=P(j-y_0)$.

Lemma 3. If $x_0 > u_2$, then $\sigma(b(-1))$ is composed of y_0 segments of C(q) with the equal length x_0 , and of $u_1 - y_0$ segments of C(q) with the equal length $x_0 - u_2$. If $1 \le x_0 \le u_2$, then $\sigma(b(-1))$ is composed of y_0 segments of C(q) with the equal length x_0 . If $x_0 \le 0$, then $b(-1) = \phi$.

The above three lemmas lead to

Theorem 3. Assume that (q_i, a_i) (i=1, 2) satisfy the condition of Theorem 1. Let the pairs (x_0, y_0) and (x_1, y_1) be defined as in the introduction, and $t \in N$ as in Lemma 1. Then $S(q_1, a_1, -1) \cap S(q_2, a_2, b_2) = \phi$ holds if and only if $\rho(b_2) \in \rho(G_1 \cup G_2)$, where

$$G_1 = \cup T_{kt} \langle [a_2 - u_2, a_2 - u_2 + x_0 - 1] \rangle$$
 $(0 \le k \le y_0 - 1)$

and

$$G_2 = \bigcup T_{rt} \langle [-x_0 - a_2 + u_2, -a_2 - 1] \rangle$$
 $(0 \le r \le y_1 - 1).$

No. 6]

(If $x_0 \leq u_2$, we take $G_2 = \phi$.)

Through some calculations, we can deduce Theorems 1 and 2 from above lemmas and Theorem 3.

References

- A. S. Fraenkal: The bracket function and complementary set of integers. Can. J. Math., 21, 6-27 (1969).
- [2] Ivan Niven: Diophantine Approximations. Interscience, New York (1963).
- [3] R. Morikawa: On eventually covering families generated by the bracket function (to appear in Bull. Liberal Arts, Nagasaki Univ. (Natural Science), 23).