[Vol. 58(A),

72. Cech Cohomology of Foliations and Transverse Measures

By Shigeru YAMAGAMI

Research Institute for Mathematical Science, Kyoto University (Communicated by Heisuke HIRONAKA, M. J. A., June 15, 1982)

§ 1. Introduction. For the holonomy groupoid Γ of a foliation (M, F), the transverse measure with modulus in the non-commutative integration theory [1] of A. Connes is an extension of the ordinary concept of transverse measures for the foliation. We will find in Theorem 1 a necessary and sufficient condition for the modulus δ in order that a faithful transverse measure in the Lebesgue measure class with this modulus δ exists. The condition is that δ belongs to the canonical Cech cohomology class of the foliation.

We shall define the associated foliation (\tilde{M}, \tilde{F}) for a given foliation (M, F) and show in Theorem 2 that the canonical Cech cohomology class of (\tilde{M}, \tilde{F}) vanishes and the von Neumann algebra associated with (\tilde{M}, \tilde{F}) is the crossed product of the same for (M, F) by its modular action.

§ 2. Definitions. We mainly follow the notations and the terminology in [1]. We assume that the holonomy groupoid Γ is a Hausdorff space.

Let us define a sheaf C_F^{∞} on M, whose sections are real-valued C^{∞} functions constant along leaves. More precisely, for each open subset U of M, the sections of C_F^{∞} over U is given by

(1) $C_F^{\infty}(U) = \{ f \in C^{\infty}(U) ; X f = 0 \text{ for } X \in TF \}.$

Analogously we define a sheaf L_F on M, whose sections are Lebesgue measurable functions constant along leaves. Its precise definition is as follows: Set

(2) $\tilde{L}_F(U) = \{f; f \text{ is a real-valued Lebesgue measurable function, constant along plates in } U\}.$

Here we don't distinguish two almost equal functions. $\tilde{L}_F(U)$ forms a presheaf on M and L_F is defined to be the sheaf generated by \tilde{L}_F .

Now we associate a cohomology class c(F) in $H^1(M, C_F^{\infty})$ with the foliation (M, F). Take an open covering $\mathcal{U}=\{U_{\alpha}\}$ of M by foliated charts. We denote the transversal coordinates in U_{α} by q_{α}^i . Let $c_{\alpha\beta}$ be an element of $C_F^{\infty}(U_{\alpha} \cap U_{\beta})$ defined by

(3)
$$c_{\alpha\beta} = \log \left| \det \left(\frac{\partial q_{\beta}^{i}}{\partial q_{\alpha}^{j}} \right) \right|.$$

Then $c_{\alpha\beta}$ satisfies the cocycle condition

No. 6] Cech Cohomology and Transverse Measures

(4) $c_{\alpha\beta}+c_{\beta\gamma}+c_{\gamma\alpha}=0$ on $U_{\alpha}\cap U_{\beta}\cap U_{\gamma}$ and represents a cohomology class in $H^{1}(\mathcal{O}, C_{F}^{\infty})$. Taking the inductive limit with respect to the covering, we obtain a Cech cohomology class c(F) in $H^{1}(M, C_{F}^{\infty})$.

Since C_F^{∞} can be regarded as a subsheaf of L_F , there is a canonical homomorphism of $H^1(M, C_F^{\infty})$ into $H^1(M, L_F)$. The image of c(F) under this homomorphism is denoted by $\tau(F)$.

Finally we define a cohomology group associated with the holonomy groupoid Γ . Let $Z(\Gamma)$ be the set of Lebesgue measurable homomorphisms of Γ into \mathbf{R}_+ (the set of positive real numbers). As before, two almost equal homomorphisms are regarded as the same. Let $B(\Gamma)$ be a subset of $Z(\Gamma)$ whose element h is of the form

(5) $h(\gamma) = f(r(\gamma))f(s(\gamma))^{-1}$ for $\gamma \in \Gamma$ where f is a R_+ -valued Lebesgue measurable function on the unit space $\Gamma^{(0)}$. We set $H(\Gamma) = Z(\Gamma)/B(\Gamma)$.

§3. Obstruction to the existence of transverse measures.

Proposition. We have a canonical isomorphism:

 $H(\Gamma)\cong H^1(M,L_F).$

Sketch of the proof. Let $[h] \in H(\Gamma)$ with $h \in Z(\Gamma)$. We want to construct the corresponding element in $H^1(M, L_F)$. Take an open covering $\mathcal{U}=\{U_{\alpha}\}$ of M and \mathbb{R}_+ -valued measurable function h_{α} on U_{α} such that

 $h = (h_{\alpha} \circ r)(h_{\alpha} \circ s)^{-1}$ on Γ_{α}

where Γ_{α} is the holonomy groupoid associated with the foliation $(U_{\alpha}, F|_{U_{\alpha}})$. Set $c_{\alpha\beta} = \log h_{\alpha}|_{U_{\alpha} \cap U_{\beta}} - \log h_{\beta}|_{U_{\alpha} \cap U_{\beta}}$. Then $c_{\alpha\beta} \in L_{F}(U_{\alpha} \cap U_{\beta})$ and $\{c_{\alpha\beta}\}$ satisfies the cocycle condition and defines a cohomology class in $H^{1}(\mathcal{U}, L_{F})$. Letting the covering \mathcal{U} finer and finer, we obtain a cohomology class in $H^{1}(\mathcal{M}, L_{F})$. Now one can prove that this correspondence is well-defined and gives rise to an isomorphism between $H(\Gamma)$ and $H^{1}(\mathcal{M}, L_{F})$.

Remark. In the following we identify $H(\Gamma)$ with $H^{1}(M, L_{F})$ by the above isomorphism.

Let δ be an element of $Z(\Gamma)$. For a nowhere vanishing C^{∞} -density D of TF, $\nu \equiv s^*D$ defines a faithful transverse function on Γ ([1] p. 119) and we have a 1-1 correspondence between transverse measure Λ on Γ with modulus δ and δ -symmetric measure Λ_{ν} on $\Gamma^{(0)}$ ([1] Theorem II. 3, [2] Theorem 10). A transverse measure Λ is called to be in Lebesgue class if the measure Λ_{ν} is equivalent to a measure defined by a nowhere vanishing C^{∞} -density on $\Gamma^{(0)}$. Now the following theorem is an easy consequence of the definitions.

Theorem 1. Γ has a Lebesgue class transverse measure with modulus δ if and only if the cohomology class $[\delta]$ of δ in $H(\Gamma)$ is equal to $\tau(F)$.

S. YAMAGAMI

§4. Crossed products for foliations. Given a foliation (M, F), we denote by $W^*(M, F)$ the von Neumann algebra of random operators on the holonomy groupoid (with Lebesgue measure class) ([1] p. 84). We shall construct a new foliation (\tilde{M}, \tilde{F}) for which the cohomology class $c(\tilde{F})$ vanishes and the associated von Neumann algebra $W^*(\tilde{M}, \tilde{F})$ is isomorphic to the crossed product of $W^*(M, F)$ by its modular action.

First note that we have the de Rham type isomorphism (see [5] for example):

(6)
$$H^1(M, C_F^{\infty}) \cong \{\theta; \theta \text{ is a } C^{\infty} \text{-section of } T^*F \text{ such that } d_F \theta = 0\} / \{d_F f; f \text{ is a } C^{\infty} \text{-function on } M\},$$

where d_F denotes the exterior derivative along leaves. Let θ be a d_F closed 1-form which represents the cohomology class c(F) by the above isomorphism. Set $\tilde{M}=M\times R$ and $E=\{(X,v)\in T(M\times R); v=\theta(X), X \in TF\}$. Then E is an involutive subbundle of $T\tilde{M}$ and defines a foliation \tilde{F} in \tilde{M} . Let π be the canonical projection of \tilde{M} onto M. The foliation (\tilde{M}, \tilde{F}) has the following properties:

- (i) $\pi: \tilde{M} \rightarrow M$ has a structure of principal **R**-bundle.
- (ii) $\pi_*(T\tilde{F}) = TF$.
- (iii) \tilde{F} is *R*-invariant.
- (iv) $b(\tilde{M}, \tilde{F}) = c(F)$,

where $b(\tilde{M}, \tilde{F})$ is a cohomology class in $H^1(M, C_F^{\infty})$ associated with the foliated **R**-bundle (\tilde{M}, \tilde{F}) defined as follows: Let $U = \{U_a\}$ be an open covering of M and $\rho_a : \pi^{-1}(U_a) \to U_a \times \mathbf{R}$ be a local trivialization of **R**-bundle \tilde{M} . Let $\{g_{\alpha\beta}\}$ be the family of transition functions $(g_{\alpha\beta} \text{ is a } C^{\infty} - function \text{ on } U_a \cap U_{\beta})$. By (ii) and (iii), there is a 1-form θ_a on U_a such that

)
$$\rho_{\alpha^*}(TF) = \{ (X, \theta_{\alpha}(X)) \in T(U_{\alpha} \times R) ; X \in TF \}$$

and we have $\theta_{\alpha} - \theta_{\beta} = d_F g_{\alpha\beta}$. Since θ_{α} is d_F -closed (by the involutivity of $T\tilde{F}$), we can find $f_{\alpha} \in C^{\infty}(U_{\alpha})$ such that $\theta_{\alpha} = d_F f_{\alpha}$. The relation $\theta_{\alpha} - \theta_{\beta}$ $= d_F g_{\alpha\beta}$ implies that $f_{\alpha} - f_{\beta} - g_{\alpha\beta} \in C^{\infty}_F(U_{\alpha} \cap U_{\beta})$, and $\{f_{\alpha} - f_{\beta} - g_{\alpha\beta}\}$ defines a cohomology class in $H^1(\mathcal{U}, C^{\infty}_F)$. Taking the inductive limit for the covering \mathcal{U} , we get the cohomology class $b(\tilde{M}, \tilde{F})$ in $H^1(M, C^{\infty}_F)$.

Conversely one can show that a foliation (\tilde{M}, \tilde{F}) satisfying above conditions (i)–(iv) is isomorphic to the one constructed from (M, F) at the beginning of this section.

Summarizing this section, we have the following:

Theorem 2.

(7

(i) $c(\tilde{F})=0.$

(ii) $W^*(\tilde{M}, \tilde{F}) \cong W^*(M, F) \times_{\sigma} R$,

where σ is a modular action for $W^*(M, F)$.

Corollary. (\tilde{M}, \tilde{F}) has a Lebesgue class transverse measure with trivial modulus.

Cech Cohomology and Transverse Measures

No. 6]

261

Remark. The *R*-action (as principal *R*-bundle) on \tilde{M} leaves \tilde{F} invariant and it induces an action ϕ of *R* on $W^*(\tilde{M}, \tilde{F})$ which coincides with the dual action of the modular action. The crossed product of $W^*(\tilde{M}, \tilde{F})$ by ϕ is also expressed by foliation. In fact, let $\tilde{M} = \tilde{M}$ $(=M \times R)$ and define a foliation \tilde{F} in \tilde{M} so that leaves in \tilde{F} are of the form $\mathcal{L} \times R$ with \mathcal{L} in *F*. Then one can show that the holonomy groupoid of (\tilde{M}, \tilde{F}) is isomorphic to the semidirect product of \tilde{I} (the holonomy groupoid of (\tilde{M}, \tilde{F})) by ϕ (see [1] p. 65, [3] for the definition of semidirect product) and hence $W^*(\tilde{M}, \tilde{F})$ is isomorphic to the geometrical version of Takesaki's duality ([4]) $W^*(\tilde{M}, \tilde{F}) \times_{\phi} R \cong W^*(M, F) \otimes \mathcal{B}(L^2(R))$.

References

- A. Connes: Sur la théorie non commutative de l'intégration. Lect. Notes in Math., vol. 725, Springer, pp. 19-143 (1979).
- [2] D. Kastler: On A. Connes' Non Commutative Integration Theory (preprint).
- [3] J. Renault: A groupoid approach to C*-algebras. Lect. Notes in Math., vol. 793, Springer (1980).
- [4] M. Takesaki: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math., 131, 249-310 (1974).
- [5] I. Vaisman: Cohomology and Differential Forms. Marcel Dekker, New York (1973).