70. Retraction and Extension of Mappings of M₁-Spaces

By Takuo MIWA

Department of Mathematics, Shimane University

(Communicated by Kôsaku YOSIDA, M. J. A., June 15, 1982)

In this paper, we shall prove that an M_1 -space X can be imbedded in an M_1 -space Z(X) as a closed subset in such a way that X is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)) if and only if X is a retract (resp. neighborhood retract) of Z(X), where \mathcal{M}_1 is the class of all M_1 -spaces. Moreover, we shall prove that an M_1 -space is an AE (\mathcal{M}_1) (resp. ANE (\mathcal{M}_1)) if and only if it is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)).

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces and all maps to be continuous. N denotes the set of all natural numbers. Let C be a class of spaces. For the definitions of AR (C), ANR (C), AE (C) and ANE (C), see [4]. Note that in [4] each class C is weakly hereditary; that is to say, if C contains X, then it contains every closed subspace of X. However, in this paper we consider the class \mathcal{M}_1 of all M_1 -spaces though it is unknown if \mathcal{M}_1 is weakly hereditary.

1. Auxiliary lemma. For the definitions of uniformly approaching anti-cover and D-space, see [6]. The following lemma was essentially proved in the proof of [5, Lemma, 3.2].

Lemma 1.1. Let X be a D-space, F a closed subset of X and f a map from F into a space Y. Let Y also denote the natural imbedding of Y in $X \bigcup_{f} Y = Z$. If $\bigcup = \{U_{\alpha} : \alpha \in A\}$ is a closure preserving open collection in Y, then for each $\alpha \in A$ there is a collection $\{U'_{\beta} : \beta \in B_{\alpha}\}$ of open subsets in Z satisfying the following three conditions:

(C1) $U' = \{U'_{\beta} : \beta \in B_{\alpha}, \alpha \in A\}$ is closure preserving in Z,

(C2) for each $\beta \in B_{\alpha}$, $U'_{\beta} \cap Y = U_{\alpha}$, and for every open subset V in Z with $V \cap Y = U_{\alpha}$ there is $\beta \in B_{\alpha}$ such that $U_{\alpha} \subset U'_{\beta} \subset V$, and

(C3) for every open subset W in Y, there is an open subset W' of Z such that $W' \cap Y = W$ and $W' \cap U'_{\beta} = \phi$ whenever $\beta \in B_{\alpha}$ and $W \cap U_{\alpha} = \phi$.

Proof. Let p be the projection from the free union $X \cup Y$ to Z. Since X is a D-space, X is an M_1 -space. Therefore X is monotonically normal. Let G be a monotone normality operator for X satisfying the properties in [3, Lemma 2.2]. Since X is a D-space, F has a uniformly approaching anti-cover $\mathbb{CV} = \{V_{\lambda} : \lambda \in A\}$ in X. In particular, since X is hereditarily paracompact, we may assume that \mathbb{CV} is locally finite in X-F. For each $U_a \in \mathbb{C}$, let $U'_a = \bigcup \{G(x, F-p^{-1}(U_a)): x\}$ $\in p^{-1}(U_{\alpha})$ }. Then U'_{α} is obviously open in X. For each $\alpha \in A$, let $B_{\alpha} = \{\gamma(\alpha) \subset \Lambda : p^{-1}(U'_{\gamma(\alpha)}) \text{ is open in } U'_{\alpha}\}$, where $U'_{\gamma(\alpha)} = U_{\alpha} \cup p(\cup \{V_{\lambda} : \lambda \in \gamma(\alpha)\})$. Let $B = \cup \{B_{\alpha} : \alpha \in A\}$, and $U' = \{U'_{\beta} : \beta \in B\}$. Then it is easy to see that the conditions (C1)-(C3) are satisfied by U'.

Main theorems. In metric spaces, the closed imbedding 2. theorem of Eilenberg-Wojdyslawski plays an important role in the development of retract theory. By using this theorem, it was shown that a metric space is an AE (\mathcal{M}) (resp. ANE (\mathcal{M})) if and only if it is an AR (\mathcal{M}) (resp. ANR (\mathcal{M})), where \mathcal{M} is the class of all metric In [1], R. Cauty showed that a stratifiable space X can be spaces. imbedded in a stratifiable space Z(X) as a closed subset in such a way that X is an AR (S) (resp. ANR (S)) if and only if X is a retract (resp. neighborhood retract) of Z(X), where S is the class of all stratifiable In this section, for a space X we shall construct Z(X) by spaces. using the method of R. Cauty [1], and prove the analogous results for the class of all M_1 -spaces. For the definitions of M_1 -space and stratifiable space, see [2].

Construction 2.1. Let X be a space. M(X) denotes the full simplicial complex which has all points of X as the set of vertices. Then there is a canonical bijection *i* from the 0-skeleton M° of M(X) onto X. Let $Z' = M(X) \bigcup_i X$ be the adjunction space and $p' : M(X) \bigcup X \rightarrow Z'$ the projection. By the aid of p', we identify X with $p'(X) \subset Z'$. Since the restriction of p' to M(X) is a bijection from M(X) onto Z', by the abuse of language, a simplex σ of M(X) is said to be contained in a subset U of Z' if $p'(\sigma)$ is contained in U. Z(X) denotes the space such that Z' is the underlying set of Z(X) and the topology of Z(X) has a base which consists of a collection of sets U, which is open in Z', satisfying the following condition:

(C) If σ is a simplex of M(X) such that all vertices of σ are contained in $U \cap X$, then σ is contained in U.

Let $p: M(X) \cup X \rightarrow Z(X)$ be the projection. Then p is obviously continuous. Let M^n be the *n*-skeleton of M(X) and $Z^n = p(M^n \cup X)$.

Lemma 2.2. If X is an M_1 -space, then Z(X) is also M_1 .

Proof. For each $n \in N$, let Y be the free union of all (n+1)simplexes of M(X), F the boundary of Y and $f: F \to Z^n$ the map defined by f(x) = p(x) for $x \in F$. Then the set $Y \bigcup_f Z^n$ is equal to the set Z^{n+1} . Let $\{U_{\alpha} : \alpha \in A\}$ be a closure preserving open collection in Z^n . Since Y is a metric space, Y is a D-space. Therefore the technique of proof of Lemma 1.1 yields that, for each $\alpha \in A$, there is a collection $\{U'_{\beta}: \beta \in B_{\alpha}\}$ of open subsets in Z^{n+1} satisfying (C1)-(C3). (Note that this proof is slightly different from that of Lemma 1.1; i.e. if σ is (n+1)simplex and U_{α} contains all vertices of σ , then σ is contained in U'_{β} , $\beta \in B_{\alpha}$.) Now, let $\{U(\alpha_1): \alpha_1 \in A\}$ be a closure preserving open collection in $X (=Z^{\circ})$. From the preceding paragraph we get that every $U(\alpha_1)$ can be extended to open sets $\{U(\alpha_1, \alpha_2): \alpha_2 \in A(\alpha_1)\}$ in Z^1 in such a way that the collection $\{U(\alpha_1, \alpha_2): \alpha_1 \in A, \alpha_2 \in A(\alpha_1)\}$ satisfies (C1)–(C3). Repeating this process, we get for each $n \in N$ a closure preserving open collection $\{U(\alpha_1, \alpha_2, \alpha_3, \cdots): \alpha_1 \in A, \alpha_2 \in A(\alpha_1), \cdots, \alpha_{n+1} \in A(\alpha_1, \cdots, \alpha_n)\}$ in Z^n . Let $\Sigma = \{(\alpha_1, \alpha_2, \alpha_3, \cdots): \alpha_1 \in A, \alpha_2 \in A(\alpha_1), \alpha_3 \in A(\alpha_1, \alpha_2), \cdots\}$. For each $(\alpha_1, \alpha_2, \cdots) \in \Sigma$, let $U(\alpha_1, \alpha_2, \cdots) = \bigcup \{U(\alpha_1, \cdots, \alpha_n): n \in N\}$. Then it is easy to see that $U(\alpha_1, \alpha_2, \cdots)$ is open in Z(X) and $U = \{U(\alpha_1, \alpha_2, \cdots): (\alpha_1, \alpha_2, \cdots) \in \Sigma\}$ is closure preserving in Z(X).

Finally, let $\{\mathcal{U}_n\}$ is a σ -closure preserving base for X. Then it is easily verified that the extensions $\{\mathcal{U}'_n\}$ of $\{\mathcal{U}_n\}$ to Z(X), by the same method above, is a σ -closure preserving base at each point of X. Furthermore, since M(X) is an M_1 -space by [2, Theorem 8.3] and the open subspace Z(X) - X is homeomorphic to an open subspace M(X), there exists a σ -closure preserving base $\{\mathcal{C}_n\}$ at each point of Z(X) - X. Thus $\{\mathcal{U}'_n\} \cup \{\mathcal{C}_n\}$ is a σ -closure preserving base for Z(X). This completes the proof.

The following lemma was proved in [1, Lemma 1.2].

Lemma 2.3. Let X be a space. If Y is a stratifiable space, A a closed subset of Y and $f: A \rightarrow X$ a map, then there is a map $F: Y \rightarrow Z(X)$ with F | A = f.

The following theorem is an immediate consequence of Lemmas 2.2 and 2.3.

Theorem 2.4. An M_1 -space X is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)) if and only if X is a retract (resp. neighborhood retract) of Z(X).

The following theorem is a direct consequence of Theorem 2.4 and Lemma 2.3. Note that whether the class \mathcal{M}_1 is weakly hereditary is a long-standing unsolved question first posed by Ceder [2].

Theorem 2.5. An M_1 -space is an AE (\mathcal{M}_1) (resp. ANE (\mathcal{M}_1)) if and only if it is an AR (\mathcal{M}_1) (resp. ANR (\mathcal{M}_1)).

References

- R. Cauty: Rétractions dans les espaces stratifiables. Bull. Soc. math. France, 102, 129-149 (1974).
- [2] J. G. Ceder: Some generalizations of metric spaces. Pacific J. Math., 11, 105-126 (1961).
- [3] R. W. Heath, D. J. Lutzer, and P. L. Zenor: Monotonically normal spaces. Trans. Amer. Math. Soc., 178, 481-493 (1973).
- [4] S. T. Hu: Theory of Retracts. Wayne State Univ. Press, Detroit (1965).
- [5] T. Miwa: Extension properties for *D*-spaces and adjunction spaces (preprint).
- [6] K. Nagami: The equality of dimensions. Fund. Math., 106, 239-246 (1980).