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7. On Laplacian and Hessian Comparison Theorems

By Atsushi KASUE
Department of Mathematics, University of Tokyo.

(Communicated by Kunihiko KODAIRA, M. $. A., Jan. 12, 1982)

In this paper, we shll state Laplacian and Hessian comparison
theorems and give their applications to the following subjects"

(1) the theory of harmonic functions on a Riemannian manifold,
(2) the geometric structure of Riemannian manifold with

boundary.
The full proofs of the results in this paper will be given in the

forthcoming ppers [6] nd [7].
Throughout this paper, let M be a connected Riemannian manifold

of dimension m with (possibly empty) smooth boundary M. We
write M0 for the interior of M and M for the tangent space at x. Let
dis (x, y) denote the distance between two points x and y defined by
the Riemnnian metric g of M.

1. Let N be a closed subset of M and x a point of Mo\N. Sup-
pose there is a geodesic a:[0, 1]--M such that a((0,/])cM0, a(1)=x and
dis (N, a(t))=t for t e [0, 1]. We choose two continuous functions R
and K on [0, l] such that

(1.1) the Ricci curvature in direction a(t)_(m-1)R(t),
(1.2) the sectional curvature of any plane containing #(t)K(t).

When N is a closed submanifold o dimension n, we choose a real num-
ber /such that

(1.3) the trace of S;0__<nz/,
where S;0 is the second fundamental form of N with respect to #(0)
(i.e., g(S;0X, Y) g( x#(O) Y)). Let f, h, and H be, respectively, the
solutions of the equations"

(1.4) f"q-Rf=O with f(0)=0 and f’(0)=l,
(1.5) h"+Rh=O with h(O)=l and h’(O)=t,
(1.6) H"+KH=O with H(0)=I and H’(0)=0.

With these preparations, we have the following theorems.
Theorem 1 (Laplacian comparison theorem). For any nonde-

creasing C2-function on (0,/], the distance function p=dis(N, .)
satisfies

(1.7) z/ff(tg)(x)_<_(ff"+(m-1)’f’/f)(p(x)).
In the case when N is a hypersurface, we have

(1.8) z/ff(tg)(x)_<_(ff"+(m-1)’h’/h)(p(x)).
Similarly, we can obtain upper estimates of the Hessian/rff(p) in
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terms of the lower bounds of the sectional curvature along a and more-
over the upper bound of the eigenvalues of S;(0 when N is a submani-
fold. As for the lower estimate of 7(p), we have the following

Theorem 2 (Hessian comparison theorem). We assume M is
moreover a complete Riemannian manifold without boundary. Suppose
the sectional durvature of M is nonpositive and N is a totally convex
closed subset of M. Then we have
72r(p)x(X X) "(p(x))g((1), X) +(’H’/H)(p(x)){g(X, X) g((1), X)}
for any X e M.

Here we call a closed subset N totally convex if or any x, y e N
and every geodesic :[0, 1]M (3M=) such that (0)=x and y(1)=y,
the image o r is contained in N.

We remark that when a can be extended to a geodesic a: [0, i]M
(li) such that dis (N,(t))=t or t e [0,], inequality (1.7) is exactly
the Laplacian comparison theorem of Greene and Wu [2] in the case N
is a point and inequality (1.8)is implicit in a comparison theorem by
Heintze and Karcher [3]. However in our situations, Theorem 1 does
not ollow from the known comparison theorems such as mentioned
above. In act, our proof of Theorem 1 requires much more delicate
arguments (cf. Wu [9]).

2. In this section, we assume M is a complete, noncompact
Riemannian manifold without boundary. We call M hyperbolic if it
has a nonconstant positive superharmonic function and parabolic if it
is not hyperbolic. Let 9 be a compact domain in M such that the
boundary N is smooth. Let W, be the lower envelope of the amily
of nonnegative superharmonic unctions on M which dominate 1 on
9. Then W is called the harmonic measure of relative to M. It
is well known that M is parabolic i W=I on M and hyperbolic i
W,I on M (c. e.g. [1, p. 135]). Now we choose a continuous unc-
tion R on [0, ) and a real number A such that or any geodesic a [0, l]
M with dis(N,a(t))=t (t e [0,/]), R satisfies inequality (1.1) and A
satisfies inequality (1.3). Let h be the solution of equation (1.5) defined
by R and A. Set

(t)=l/C [l/h- (r>O) and (t)=lim (t),
3t

where

hen by inequality (1.8), we see ha (0) (p=dis (D, ,)) is subhar-
monie on M9, (p)=l on N and (0)=0 on {eM: p()=}.
Therefore we see that for each r>0, W(p) on M9. Thus we
obtain the following

Theorem . W(p) on M9. In particular, if
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1/h-’= oo,

then M is parabolic.
in the rest of this section, we assume M has nonpositive sectional

curvature and contains a totally convex closed subset D. Then we
have the following

Theorem 4. Suppose there is a nonpositive continuous function
K on [0, oo) such that the sectional curvature at x e M is bounded from
above by K(p(x)) (p-dis (/2, ,)), and moreover K is not identically
zero if m>=3 or K satisfies K(t)-(l+D/(t log t) on [a, oo) for some
0 and a>O if m-2. Then there is a superharmonic function
such tha 0<__<1 on M, =1 on 2, and (x) tends to 0 as (x)-oo.

Proof. Let H be the solution of equation (1.6) defined by K.
Then by the assumptions on K, we see that: I/H-< +
(cf. [8] in %he case when -2). Ve no define continuous func%ion

on M by =1/C[ 1/H-’ on M\Y2 and 4)=1 on D, where

Then by Theorem ., we see that is a required function.
As an application of Theorem 4, we have the following

CorollarTo Let Mg ) be i Theorem
rates M. Then M has a nonconstant bounded harmonic function.
Moreover if M\9 has a connected component whose boundary is com-
pact, then there is a nonconstant harmonic function with finite
Dirichlet norm.

We remark that Theorem 3 contains as a special case a theorem
of Ichihara ([5, Theorem 2.1]) and the first assertion of Corollary is
a generalization of a result by Greene and Wu ([2, Proposition 7.1]).
Moreover we notice that each o the conditions in Theorems 3, 4 and
Corollary is optimum.

3. In this section, we assume M is complete and the boundary
3M is smooth. We say M is of class (R, A) (R, A e R) if the Ricci cur-
vature of M is bounded rom below by (m-1)R and the trace of S is
bounded from above by (m-1)A, where S is the second fundamental
orm of 3M with respect to the unit inner normal vector field on 3M.
Set i(M)=sup {dis (x, 3M)" x e M} ( + o), C,(R, A)=in {t" t0, h(t)
=0} (+) and C.(R,A)=inf {t" tO, h’(t)=0} (=< +c), where h is
the solution of the equation (1.5) defined by R and A. Then as applica-
tions o Theorem 1, we have the ollowing theorems.

Theorem 5. Let M be a Riemannian manifold of class (R,A).
Then"
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(1) i(M)<=C(R, A).
(2) If C(R, A)<: + and dis (p, 3M)=C(R, A) for some p e M,

then M is isometric to the closed metric ball with radius CI(R, A) in the
simply connected space form of constant sectional curvature R.

(3) CI(R,A) +c if and only if R.O, R=0 and AO, or RO
and A-/-R.

Theorem 5. Let M be a Riemannian manifold of class (R, A).
Suppose 3M is disconnected and it has a compact connected component,
say I. Then"

(1) If R--0 and A-0, M i the isometric product [0, a] F.
(2) If RO, then AO and min_dis(F,F)<=2C(R,A), where

(F}=,.,... are the connected components of 3M. Moreover if
mim._ dis (F, F)-2C(R, A), then M is isometric to the warped product
[0, 2C.(R, A)] F.

Theorem 7. Let M be a Riemannian manifold of class (R, A).
Suppose 3M is compact but M is noncompact. Then"

() R<=O.
(2) If R=O and A-O, then 3M is connected andM is the isometric

product [0, c) M.
(3) IfAO, thenR0 andA --/-R. Moreover if A= -/--R,

then M is isometric to the warped product [0, c)M.
After the preparation of [7], the author was informed that Ichida

[4] has also shown the assertion (1) oJ Theorem 6, independently.
Finally the author would like to express sincere thanks to Prof.

T. Ochiai for his helpful advice and encouragement.
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