67. On a Certain Inverse Problem for the Heat Equation on the Circle^{*)}

By Takashi SUZUKI Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., June 15, 1982)

In the previous work [3]–[5], the author considered the heat equation $u_t = u_{xx} - p(x)u$ $(0 < t < \infty, 0 < x < 1)$ on the compact interval [0, 1] with the boundary condition $u_x - hu|_{x=0} = u_x + Hu|_{x=1} = 0$ $(0 < t < \infty)$ and with the initial condition $u|_{t=0} = a(x)$ (0 < x < 1), which is denoted by $(E_{p,h,H,a})$, and studied the problem to determine the coefficients p, h, Hand the initial value a from the values of the solution on the boundary or on some interior point $x_0 \in (0, 1)$, and so on. In the present paper, we consider the same equation on the circle S^1 , the compact interval [0, 1] with end points identified, and study similar problems as those.

Namely, for $p \in C^{1}(S^{1})$ and $a \in L^{2}(S^{1})$, let $(E_{p,a}^{s})$ denote the heat equation

(1)
$$\frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right)u = 0$$
 $(0 < t < \infty, x \in S^1)$

with the initial condition

(2) $u|_{t=0} = a(x) \quad (x \in S^1),$

and let A_p^s be the realization in $L^2(S^1)$ of the differential operator $p(x) - \partial^2 / \partial x^2$. Henceforth $p \in C^1(S^1)$ means $p \in C^1(\mathbb{R}^1)$ and p(x+1) = p(x). The problem which we have in mind here is, for instance, as follows: Do the values $\{u(t, x_0), u_x(t, x_0) | T_1 \leq t \leq T_2\}$ determine uniquely (p, a), where $x_0 \in S^1$ and $0 \leq T_1 < T_2 < \infty$? However, this question is negative without any assumption on (p, a). For example, $u \equiv 0$ holds for each p if $a \equiv 0$. In fact, for the equation $(E_{p,h,H,a})$, Suzuki [5] showed that the values $\{u(t, 1/2), u_x(t, 1/2) | T_1 \leq t \leq T_2\}$ determine uniquely (p, h, H, t)a) if a is "a generating element with respect to $A_{p,h,H}$ ", where $A_{p,h,H}$ denotes the realization in $L^2(0,1)$ of the differential operator p(x) $-\partial^2/\partial x^2$ with the boundary condition, and where $a \in L^2(0,1)$ is said to be a generating element with respect to $A_{p,h,H}$ iff it is not orthogonal to any eigenfunction of $A_{p,h,H}$. Similar results are obtained by Suzuki [3], [4] for other inverse problems for $(E_{p,h,H,a})$, and also by Suzuki-Murayama [7], Murayama [1] and the papers referred by them. See Suzuki [6], for these works.

In order to generalize the notion of "generating" to our problem,

^{*)} This work was supported partly by the Fûju-kai.

however, we have to pay attention to the multiplicities of eigenvalues of A_p^s . We recall that each eigenvalue of $A_{p,h,H}$ is simple, while that of A_p^s may be double. Indeed, S. Nakagiri considered in [2] a general parabolic equation in a bounded domain $\Omega \subset \mathbb{R}^N$ with smooth coefficients, and studied the problem to determine the coefficients of it from full informations of several solutions: $\{u^j(t, x) | 0 \leq t < \infty, x \in \overline{\Omega}, 1 \leq j \leq \alpha\}$. He showed that if the set of initial values $\{a^j \equiv u^j|_{\iota=0} | 1 \leq j \leq \alpha\}$ satisfies the so-called "rank condition", then $\{u^j(t, x) | 0 \leq t < \infty, x \in \overline{\Omega}, 1 \leq j \leq \alpha\}$ $1 \leq j \leq \alpha\}$ determine uniquely the coefficients. We now recall it and introduce the notion of "a generating set of initial values" according to [2].

Notation. The eigenvalues of A_p^s are denoted by $\{\lambda_n\}_{n=0}^{\infty}$ $(-\infty < \lambda_0 < \lambda_1 < \cdots \rightarrow \infty)$. For each $n=0,1,2,\cdots$, the multiplicity of λ_n is denoted by $\alpha(n)$, and $\{\phi_{nl} | 1 \leq l \leq \alpha(n)\}$ denotes the set of eigenfunctions of A_p^s corresponding to λ_n , normalized by $\|\phi_{nl}\|_{L^2(S^1)} = 1$.

We note $\alpha(n) = 1$ or 2 $(n = 0, 1, 2, \dots)$ and set $\alpha \equiv \max_n \alpha(n)$.

Definition. A set of initial values $\{a^j | 1 \leq j \leq \alpha\}$ is said to be generating with respect to A_p^s , iff the matrix

(3) $A_n = ((a^j, \phi_{nl})_{L^2(S^1)})_{1 \le j \le \alpha, \ 1 \le l \le \alpha(n)}$

satisfies the following rank condition for each n:

(4) $\operatorname{rank} A_n = \alpha(n) \quad (n = 0, 1, 2, \cdots).$

Here (,)_{$L^2(S^1)$} means the inner product in $L^2(S^1)$.

Now we state our results. To this end, assume that $\{a^j | 1 \le j \le \alpha\}$ is a generating set of initial values with respect to A_p^s , and let $u^j = u^j(t, x)$ denote the solution of $(E_{p,a,j})$ $(1 \le j \le \alpha)$. Furthermore, let $v^j = v^j(t, x)$ denote other solutions of $(E_{q,b,j}^s)$ for some $q \in C^1(S^1)$ and $b^j \in L^2(S^1)$ $(1 \le j \le \alpha)$, and let T_1, T_2 in $0 \le T_1 < T_2 < \infty$ be given. Then,

Theorem 1. If $x_1 \in S^1$ and $x_2 \in S^1$ satisfy the central symmetry, say $x_1=1/2$ and $x_2=1$ (=0), then the equalities

$$v^{j}(t, x_{1}) = u^{j}(t, x_{1}), \qquad v^{j}_{x}(t, x_{1}) = u^{j}_{x}(t, x_{1})$$

$$v^{j}(t, x_{2}) = u^{j}(t, x_{2}) \qquad (T_{1} \leq t \leq T_{2}, 1 \leq j \leq \alpha)$$

imply

(5)

$$(6) \qquad (q, b^{j}) = (p, a^{j}) \qquad (1 \leq j \leq \alpha).$$

Theorem 2. Suppose that $x_1 \in S^1$ and $x_2 \in S^1$ don't satisfy the central symmetry, and let $x'_1 \in S^1$ and $x'_2 \in S^1$ be the symmetric point of x_1 and x_2 , respectively, say $x_1=1/2, 1/2 \le x_2 \le 1$, $x'_1=1$ (=0) and $x'_2=x_2$ -1/2. Let A, A', B and B' be the arcs $\widehat{x_1x_2}, \widehat{x'_1x'_2}, \widehat{x'_1x_2}$ and $\widehat{x_1x'_2}$, respectively, as in Fig. 1. Then, the equalities (5) imply (7) q(x)=p(x) $(x \in A \cup A')$.

Theorem 3. Under the same circumstances as those of Theorem 2, the equalities (5) combined with either q(x) = p(x) ($x \in B$) or q(x) = p(x) ($x \in B'$) imply (6).

Fig. 1

Theorem 4. In the case of p(x+1/2)=p(x) and q(x+1/2)=q(x) $(x \in \mathcal{R}^1)$,

(5') $v^{j}(t, x_{1}) = u^{j}(t, x_{1}), \quad v^{j}_{x}(t, x_{1}) = u^{j}_{x}(t, x_{1})$ $(T_{1} \leq t \leq T_{2}, 1 \leq j \leq \alpha)$

imply (6), where $x_1 \in S^1$.

Similar theorems are obtained for inverse spectral problems for the Hill equation. Details will be published elesewhere along with the proof of Theorems 1-4, which is based on lemmas by [5].

References

- Murayama, R.: The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation. J. Fac. Sci. Univ. Tokyo, 28, 317-330 (1981).
- [2] Nakagiri, S.: Identifiability of linear systems in Hilbert spaces (1981) (preprint).
- [3] Suzuki, T.: Uniqueness and nonuniqueness in an inverse problem for the parabolic equation (to appear in J. Differential Equations).
- [4] —: Remarks on the uniqueness in an inverse problem for the heat equation, I. Proc. Japan Acad., 58A, 93-96 (1982).
- [5] ——: ditto. II. ibid., 58A, 175–177 (1982).
- [6] ——: Inverse problems for the heat equation. Súgaku, 34, 55-64 (1982) (in Japanese).
- [7] Suzuki, T., and Murayama, R.: A uniqueness theorem in an identification problem for coefficients of parabolic equations. Proc. Japan Acad., 56A, 259-263 (1980).