67. On a Certain Inverse Problem for the Heat Equation on the Circle*)

By Takashi Suzuki
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., June 15, 1982)

In the previous work [3]-[5], the author considered the heat equation $u_{t}=u_{x x}-p(x) u(0<t<\infty, 0<x<1)$ on the compact interval [0,1] with the boundary condition $u_{x}-\left.h u\right|_{x=0}=u_{x}+\left.H u\right|_{x=1}=0(0<t<\infty)$ and with the initial condition $\left.u\right|_{t=0}=a(x)(0<x<1)$, which is denoted by ($E_{p, h, H, a}$), and studied the problem to determine the coefficients p, h, H and the initial value a from the values of the solution on the boundary or on some interior point $x_{0} \in(0,1)$, and so on. In the present paper, we consider the same equation on the circle S^{1}, the compact interval [0,1$]$ with end points identified, and study similar problems as those.

Namely, for $p \in C^{1}\left(S^{1}\right)$ and $a \in L^{2}\left(S^{1}\right)$, let ($E_{p, a}^{s}$) denote the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad\left(0<t<\infty, x \in S^{1}\right) \tag{1}
\end{equation*}
$$

with the initial condition
(2)

$$
\left.u\right|_{t=0}=a(x) \quad\left(x \in S^{1}\right),
$$

and let A_{p}^{s} be the realization in $L^{2}\left(S^{1}\right)$ of the differential operator $p(x)-\partial^{2} / \partial x^{2}$. Henceforth $p \in C^{1}\left(S^{1}\right)$ means $p \in C^{1}\left(\mathcal{R}^{1}\right)$ and $p(x+1)=p(x)$. The problem which we have in mind here is, for instance, as follows: Do the values $\left\{u\left(t, x_{0}\right), u_{x}\left(t, x_{0}\right) \mid T_{1} \leqq t \leqq T_{2}\right\}$ determine uniquely (p, a), where $x_{0} \in S^{1}$ and $0 \leqq T_{1}<T_{2}<\infty$? However, this question is negative without any assumption on (p, a). For example, $u \equiv 0$ holds for each p if $a \equiv 0$. In fact, for the equation ($E_{p, h, H, a}$), Suzuki [5] showed that the values $\left\{u(t, 1 / 2), u_{x}(t, 1 / 2) \mid T_{1} \leqq t \leqq T_{2}\right\}$ determine uniquely $(p, h, H$, a) if a is "a generating element with respect to $A_{p, h, H}$ ", where $A_{p, n, H}$ denotes the realization in $L^{2}(0,1)$ of the differential operator $p(x)$ $-\partial^{2} / \partial x^{2}$ with the boundary condition, and where $a \in L^{2}(0,1)$ is said to be a generating element with respect to $A_{p, n, H}$ iff it is not orthogonal to any eigenfunction of $A_{p, n, H}$. Similar results are obtained by Suzuki [3], [4] for other inverse problems for ($E_{p, h, H, a}$), and also by SuzukiMurayama [7], Murayama [1] and the papers referred by them. See Suzuki [6], for these works.

In order to generalize the notion of "generating" to our problem,

[^0]however, we have to pay attention to the multiplicities of eigenvalues of A_{p}^{s}. We recall that each eigenvalue of $A_{p, h, H}$ is simple, while that of A_{p}^{s} may be double. Indeed, S. Nakagiri considered in [2] a general parabolic equation in a bounded domain $\Omega \subset \mathscr{R}^{N}$ with smooth coefficients, and studied the problem to determine the coefficients of it from full informations of several solutions: $\left\{u^{j}(t, x) \mid 0 \leqq t<\infty, x \in \bar{\Omega}, 1 \leqq j\right.$ $\leqq \alpha\}$. He showed that if the set of initial values $\left\{\left.a^{j} \equiv u^{j}\right|_{t=0} \mid 1 \leqq j \leqq \alpha\right\}$ satisfies the so-called "rank condition", then $\left\{u^{j}(t, x) \mid 0 \leqq t<\infty, x \in \bar{\Omega}\right.$, $1 \leqq j \leqq \alpha\}$ determine uniquely the coefficients. We now recall it and introduce the notion of "a generating set of initial values" according to [2].

Notation. The eigenvalues of A_{p}^{s} are denoted by $\left\{\lambda_{n}\right\}_{n=0}^{\infty}\left(-\infty<\lambda_{0}\right.$ $\left.<\lambda_{1}<\cdots \rightarrow \infty\right)$. For each $n=0,1,2, \cdots$, the multiplicity of λ_{n} is denoted by $\alpha(n)$, and $\left\{\phi_{n l} \mid 1 \leqq l \leqq \alpha(n)\right\}$ denotes the set of eigenfunctions of A_{p}^{s} corresponding to λ_{n}, normalized by $\left\|\phi_{n l}\right\|_{L^{2}\left(S^{1}\right)}=1$.

We note $\alpha(n)=1$ or $2(n=0,1,2, \cdots)$ and set $\alpha \equiv \max _{n} \alpha(n)$.
Definition. A set of initial values $\left\{a^{j} \mid 1 \leqq j \leqq \alpha\right\}$ is said to be generating with respect to A_{p}^{s}, iff the matrix

$$
\begin{equation*}
A_{n}=\left(\left(a^{j}, \phi_{n l}\right)_{L^{2}\left(S_{1}\right)}\right)_{1 \leqq j \leqq \alpha, 1 \leqq l \leqq \alpha(n)} \tag{3}
\end{equation*}
$$

satisfies the following rank condition for each n :
(4) $\quad \operatorname{rank} A_{n}=\alpha(n) \quad(n=0,1,2, \cdots)$.

Here (, $)_{L^{2}\left(S^{1}\right)}$ means the inner product in $L^{2}\left(S^{1}\right)$.
Now we state our results. To this end, assume that $\left\{a^{j} \mid 1 \leqq j \leqq \alpha\right\}$ is a generating set of initial values with respect to A_{p}^{s}, and let u^{j} $=u^{j}(t, x)$ denote the solution of $\left(E_{p, a j}\right)(1 \leqq j \leqq \alpha)$. Furthermore, let $v^{j}=v^{j}(t, x)$ denote other solutions of ($\left.E_{q, b_{s}}^{s}\right)$ for some $q \in C^{1}\left(S^{1}\right)$ and b^{j} $\in L^{2}\left(S^{1}\right)(1 \leqq j \leqq \alpha)$, and let T_{1}, T_{2} in $0 \leqq T_{1}<T_{2}<\infty$ be given. Then,

Theorem 1. If $x_{1} \in S^{1}$ and $x_{2} \in S^{1}$ satisfy the central symmetry, say $x_{1}=1 / 2$ and $x_{2}=1(=0)$, then the equalities

$$
\begin{array}{ll}
v^{j}\left(t, x_{1}\right)=u^{j}\left(t, x_{1}\right), & v_{x}^{j}\left(t, x_{1}\right)=u_{x}^{j}\left(t, x_{1}\right) \tag{5}\\
v^{j}\left(t, x_{2}\right)=u^{j}\left(t, x_{2}\right) & \left(T_{1} \leqq t \leqq T_{2}, 1 \leqq j \leqq \alpha\right)
\end{array}
$$

imply
(6)

$$
\left(q, b^{j}\right)=\left(p, a^{j}\right) \quad(1 \leqq j \leqq \alpha)
$$

Theorem 2. Suppose that $x_{1} \in S^{1}$ and $x_{2} \in S^{1}$ don't satisfy the central symmetry, and let $x_{1}^{\prime} \in S^{1}$ and $x_{2}^{\prime} \in S^{1}$ be the symmetric point of x_{1} and x_{2}, respectively, say $x_{1}=1 / 2,1 / 2<x_{2}<1, x_{1}^{\prime}=1(=0)$ and $x_{2}^{\prime}=x_{2}$ $-1 / 2$. Let A, A^{\prime}, B and B^{\prime} be the arcs $\widehat{x_{1} x_{2}}, \widehat{x_{1}^{\prime} x_{2}^{\prime}}, \widehat{x_{1}^{\prime} x_{2}}$ and $\widehat{x_{1} x_{2}^{\prime}}$, respectively, as in Fig. 1. Then, the equalities (5) imply

$$
\begin{equation*}
q(x)=p(x) \quad\left(x \in A \cup A^{\prime}\right) \tag{7}
\end{equation*}
$$

Theorem 3. Under the same circumstances as those of Theorem 2, the equalities (5) combined with either $q(x)=p(x)(x \in B)$ or $q(x)$ $=p(x)\left(x \in B^{\prime}\right)$ imply (6).

Fig. 1
Theorem 4. In the case of $p(x+1 / 2)=p(x)$ and $q(x+1 / 2)=q(x)$ $\left(x \in \mathcal{R}^{1}\right)$,
(5')

$$
\begin{aligned}
& v^{j}\left(t, x_{1}\right)=u^{j}\left(t, x_{1}\right), \quad v_{x}^{j}\left(t, x_{1}\right)=u_{x}^{j}\left(t, x_{1}\right) \\
& \left(T_{1} \leqq t \leqq T_{2}, 1 \leqq j \leqq \alpha\right)
\end{aligned}
$$

imply (6), where $x_{1} \in S^{1}$.
Similar theorems are obtained for inverse spectral problems for the Hill equation. Details will be published elesewhere along with the proof of Theorems 1-4, which is based on lemmas by [5].

References

[1] Murayama, R.: The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation. J. Fac. Sci. Univ. Tokyo, 28, 317-330 (1981).
[2] Nakagiri, S.: Identifiability of linear systems in Hilbert spaces (1981) (preprint).
[3] Suzuki, T.: Uniqueness and nonuniqueness in an inverse problem for the parabolic equation (to appear in J. Differential Equations).
[4] -: Remarks on the uniqueness in an inverse problem for the heat equation, I. Proc. Japan Acad., 58A, 93-96 (1982).
[5] -: ditto. II. ibid., 58A, 175-177 (1982).
[6] --: Inverse problems for the heat equation. Sûgaku, 34, 55-64 (1982) (in Japanese).
[7] Suzuki, T., and Murayama, R.: A uniqueness theorem in an identification problem for coefficients of parabolic equations. Proc. Japan Acad., 56A, 259-263 (1980).

[^0]: *) This work was supported partly by the Fûju-kai.

