62. On Certain Generalized Gaussian Sums

By Michio Ozeki
Department of Mathematics, Nagasaki University
(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1982)

§ 1. Statement of the main result. Let p be a fixed prime different from 2, and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be integers which are prime to p. We denote the diagonal matrix of degree m with diagonal elements $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ by

$$
\left\langle\alpha_{1}\right\rangle \perp\left\langle\alpha_{2}\right\rangle \perp \cdots \perp\left\langle\alpha_{m}\right\rangle .
$$

Let $S=\langle 1\rangle \perp\langle 1\rangle \perp \cdots \perp\langle 1\rangle \perp\left\langle\varepsilon_{1}\right\rangle$ be a diagonal matrix of degree $m \geq 4$, and put

$$
T=\left\langle\varepsilon_{2} p^{r}\right\rangle \perp\left\langle\varepsilon_{3} p^{s}\right\rangle
$$

where r, s are non negative integers such that $r \leq s$.
Let $q=p^{a}$ be a sufficiently large power of p and $M_{m, 2}(Z)$ be the set of $m \times 2$ rational integral matrices, then the quantity $A_{q}(S, T)$ is defined to be the number of the solutions X in $M_{m, 2}(Z)$, which are different $\bmod q$ one from another, of the matrix equation

$$
\begin{equation*}
{ }^{t} X S X \equiv T \quad(\bmod q) \tag{1}
\end{equation*}
$$

where ${ }^{t} X$ is the transposed of X. There is a formula which expresses $A_{q}(S, T)$ as a kind of exponential sum, so called generalized Gaussian sum. (For details the reader is referred to [1] or [8].) Let $\omega_{a}\langle x\rangle$ be a function of a real variable x defined by

$$
\omega_{a}\langle x\rangle=\exp (2 \pi i x / q) .
$$

Let $B=\left(b_{i j}\right)$ be the binary symmetric square matrix with coefficients in Z, and C be an element of $M_{m, 2}(Z)$. By $B(q)$ we understand that the quantities $b_{11}, 2 b_{12}$ and b_{22} run independently modulo q and by $C(\bmod q)$ we understand that the coefficients of C run independently modulo q. Then the formula mentioned above reads

$$
\begin{equation*}
q^{3} A_{q}(S, T)=\sum_{\substack{B(q) \\ C(\bmod q)}} \omega_{a}\left\langle\operatorname{tr}\left\{\left({ }^{t} C S C-T\right) B\right\}\right\rangle, \tag{2}
\end{equation*}
$$

where tr is the trace of the matrix. Let G be the ordinary Gaussian sum $G=\sum_{x \bmod p} \exp \left(2 \pi i x^{2} / p\right)$ and $(* / p)$ be the Legendre's symbol, then our main results are given by the two theorems.

Theorem 1. Let the notations be as above. If $q=p^{a}, a \geqq s+1$, $m \equiv 1(\bmod 2)$ and $m \geqq 5$, then $A_{q}(S, T)$ are given by

$$
\begin{gathered}
A_{q}(S, T)=q^{2 m-3}\left(1-p^{1-m}\right)\left\{\sum_{\mu=0}^{(r-1) / 2} p^{(4-m) \mu}+\left(\frac{-\varepsilon_{2} \varepsilon_{3}}{p}\right) p^{(s+r)(3-m) / 2} \sum_{\mu=0}^{(r-1) / 2} p^{(m-2) \mu}\right\} \\
\text { if } s \geqq r \text { and } s \equiv r \equiv 1 \quad(\bmod 2),
\end{gathered}
$$

$$
\begin{aligned}
& =q^{2 m-3}\left(1-p^{1-m}\right)\left\{\sum_{\mu=0}^{(r-1) / 2} p^{(4-m) \mu}+\left(\frac{-\varepsilon_{1} \varepsilon_{3}}{p}\right) G^{m+1} p^{(s+r+1)(3-m) / 2-2} \sum_{\mu=0}^{(r-1) / 2} p^{(m-2) \mu}\right\} \\
& \text { if } s \geqq r+1 \quad \text { and } \quad s \equiv 0, r \equiv 1 \quad(\bmod 2) \text {, } \\
& =q^{2 m-3}\left(1-p^{1-m}\right)\left\{\sum_{\mu=0}^{r / 2} p^{(4-m) \mu}+p^{2 r+3-(r+2) m / 2} \sum_{\mu=0}^{(s-r-3) / 2} p^{(3-m) \mu}\right. \\
& +\left(\frac{-\varepsilon_{1} \varepsilon_{2}}{p}\right) G^{m+1} p^{3 r+1-(r+1) m}\left[\sum_{\mu=0}^{r / 2} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-1) / 2} p^{(3-m) \mu}\right] \\
& \left.-\left(\frac{-\varepsilon_{1} \varepsilon_{2}}{p}\right) G^{m+1} p^{3 r+1-(r+1) m}\left[\sum_{\mu=0}^{r / 2-1} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-3) / 2} p^{(3-m) \mu}\right]\right\} \\
& \text { if } s \geqq r+1 \quad \text { and } \quad s \equiv 1, r \equiv 0 \quad(\bmod 2) \text {, } \\
& =q^{2 m-3}\left(1-p^{1-m}\right)\left\{\sum_{\mu=0}^{r / 2} p^{(4-m) \mu}+\left(\frac{-\varepsilon_{1} \varepsilon_{2}}{p}\right) G^{m+1} p^{2 r+1-(r+2) m / 2} \sum_{\mu=0}^{(s-r-2) / 2} p^{(3-m) \mu}\right. \\
& +p^{3 r+3-(r+1) m}\left[\sum_{\mu=0}^{r / 2} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-2) / 2} p^{(3-m) \mu}\right] \\
& \left.-p^{3 r+3-(r+1) m}\left[\sum_{\mu=0}^{r / 2-1} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-4) / 2} p^{(3-m) \mu}\right]\right\} \\
& \text { if } s \geqq r \quad \text { and } s \equiv r \equiv 0 \quad(\bmod 2),
\end{aligned}
$$

where in the above formulas we should understand that the sum vanishes if the upper bound of the summation is negative. For example,

$$
\sum_{\mu=0}^{(s-r-2) / 2} p^{(3-m) \mu}=0 \quad \text { if } s-r-2<0
$$

Theorem 2. We put $\alpha=\left(\varepsilon_{1} / p\right) G^{m} p^{-m}$ and $\beta=\left(-\varepsilon_{2} \varepsilon_{3} / p\right)$. If $q=p^{a}$, $a \geqq s+1, m \equiv 0(\bmod 2)$ and $m \geqq 4$, then $A_{q}(S, T)$ are given by

$$
\begin{aligned}
A_{q}(S, T)= & q^{2 m-3}(1-\alpha)(1+\alpha \beta p)\left\{(1-\alpha \beta p) p^{(r-1)(4-m) / 2}\right. \\
& +(1-\alpha \beta p) \sum_{\lambda=0}^{(r-3) / 2} p^{(4-m) \lambda}\left[\sum_{\mu=0}^{r-1-2 \lambda} p^{(3-m) \mu}\right] \\
& +\alpha p^{2}(1-\alpha \beta p) \sum_{\lambda=0}^{(r-3) / 2} p^{(4-m) \lambda}\left[\sum_{\mu=0}^{r-2-2 \lambda} p^{(3-m) \mu}\right] \\
& +\alpha p^{(r-1)(3-m)+2}(1+\alpha p)\left[\sum_{\mu=0}^{(r-1) / 2} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r) / 2} p^{(3-m) \mu}\right] \\
& \left.-\beta p^{r(3-m)}(1+\alpha p)\left[\sum_{\mu=0}^{(r-1) / 2} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-2) / 2} p^{(3-m) \mu}\right]\right\} \\
= & q^{2 m-3}(1-\alpha)\left(1-\alpha^{2} p^{2}\right)\left\{p^{(r-1)(4-m) / 2}+\sum_{\lambda=0}^{(r-3) / 2} p^{(4-m) \lambda}\left[\sum_{\mu=0}^{r-1-2 \lambda} p^{(3-m) \mu}\right]\right. \\
& +\alpha p^{2} \sum_{\lambda=0}^{(r-3) / 2} p^{(4-m) \lambda}\left[\sum_{\mu=0}^{r-2-2 \lambda} p^{(3-m) \mu}\right] \\
& \left.+\left[p^{r(3-m)}+\alpha p^{(r-1)(3-m)+2}\right]\left[\sum_{\mu=0}^{(r-1) / 2} p^{(m-2) \mu}\right]\left[\sum_{\mu=0}^{(s-r-1) / 2} p^{(3-m) \mu}\right]\right\} \\
= & q^{2 m-3}(1-\alpha)\left(1-\alpha^{2} p^{2}\right)\left\{\left(1+\alpha p^{2}\right) \sum_{\mu=0}^{(r-2) / 2} p^{(4-m) \mu}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +p^{3-m} \sum_{\lambda=0}^{(r-2) / 2} p^{(6-2 m) \lambda}\left[\sum_{\mu=0}^{r / 2-1-2} p^{(4-m) \mu}\right] \\
& +\left(p^{6-2 m}+\alpha p^{5-m}+\alpha p^{8-2 m}\right) \sum_{\lambda=0}^{r / 2-2} p^{(6-2 m) \lambda}\left[\sum_{\mu=0}^{r / 2-2-\lambda} p^{(4-m) \mu}\right] \\
& \left.+\left[\sum_{\mu=0}^{(s-r-1 / 2} p^{(3-m) \mu}\right]\left[p^{r(3-m)} \sum_{\mu=0}^{r / 2} p^{(m-2) \mu}+\alpha p^{(r-1)(3-m)+2} \sum_{\mu=0}^{r / 2-1} p^{(m-2) \mu}\right]\right\} \\
& \text { if } s \geqq r+1 \quad \text { and } \quad s \equiv 1, r \equiv 0 \quad(\bmod 2) \text {, } \\
& =q^{2 m-3}(1-\alpha)(1+\alpha \beta p)\left\{(1-\alpha \beta p)\left(1+\alpha p^{2}\right) \sum_{\mu=0}^{(r-2) / 2} p^{(4-m) \mu}\right. \\
& +p^{3-m}(1-\alpha \beta p) \sum_{\lambda=0}^{(r-2) / 2} p^{(6-2 m) \lambda}\left[\sum_{\mu=0}^{r / 2-1-\lambda} p^{(4-m) \mu}\right] \\
& +(1-\alpha \beta p)\left(p^{6-2 m}+\alpha p^{5-m}+\alpha p^{8-2 m}\right) \sum_{\lambda=0}^{r / 2-2} p^{(6-2 m) 2}\left[\sum_{\mu=0}^{r / 2-2-\lambda} p^{(4-m) \mu}\right] \\
& +\alpha p^{(r-1)(3-m)+2}\left[\sum_{\mu=0}^{(s-r) / 2} p^{(3-m) \mu}\right]\left[\alpha p \sum_{\mu=0}^{r / 2} p^{(m-2) \mu}+\sum_{\mu=0}^{(r-2) / 2} p^{(m-2) \mu}\right] \\
& \begin{array}{c}
\left.-\beta p^{r(3-m)}\left[\sum_{\mu=0}^{(s-r-2) / 2} p^{(3-m) \mu}\right]\left[\alpha p \sum_{\mu=0}^{r / 2} p^{(m-2) \mu}+\sum_{\mu=0}^{(r-2) / 2} p^{(m-2) \mu}\right]\right\} \\
\text { if } s \geqq r \quad \text { and } s \equiv r \equiv 0 \quad(\bmod 2),
\end{array}
\end{aligned}
$$

where in the above formulas the sum vanishes if the upper bound of the summation is negative.
§2. Applications. Theorem 1 can be applied to derive explicit formulas for the Fourier coefficients $A_{k}(T)$ of Siegel-Eisenstein series of degree 3 and of weight (k is even) for the ternary primitive T. With the aids of the present work we are preparing a table of those values $A_{k}(T)$ in the range where $2 \leqq \operatorname{det}(2 T) \leqq 100$ and $4 \leqq k \leqq 24$ ([4]). Theorem 2 will serve to give explicit formulas for Eisenstein series of degree 2 and of even weight k for the general binary T. Concerning this, there is a table by Resnikoff and Saldanã [5] which gives mainly the values of $A_{4}(T)$, the Fourier coefficients of Eisenstein series of degree 2 and of weight 4, for many primitive T's and for a few imprimitive T's. For the further arithmetical investigations of Siegel modular forms of degree 2 , it would be desirable to enlarge the above table of Resnikoff and Saldanã. Theorem 2 is useful for this purpose.

References

[1] H. Braun: Über die Zerlegung quadratischer Formen in Quadrate. Crelle J., Bd. 178, pp. 34-64 (1938).
[2] H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk., 34 (1964).
[3] -: Über die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. ibid., 38 (1972).
[4] M. Ozeki and T. Washio: A table of Fourier coefficients of Eisenstein series of degree 3 (in preparation).
[5] H. L. Resnikoff and R. L. Saldaña: Some properties of Fourier coefficients of Eisenstein series of degree two. Crelle J., Bd. 265, pp. 90-109 (1974).
[6] C. L. Siegel: Über die analytische Theorie der quadratischen Formen 1. Ann. of Math., 36, 527-606 (1935).
[7] -: Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann., 116, 617-657 (1939).
[8] -: Lectures on the Analytic Theory of Quadratic Forms. Princeton University, Revised Edition (1949).

