58. Conformally Related Product Riemannian Manifolds with Einstein Parts

By Yoshihiro TASHIRO and In-Bae KIM Department of Mathematics, Hiroshima University (Communicated by Kunihiko Kodaira, M. J. A., May 12, 1982)

Introduction. Let (M, \bar{g}) and (M^*, g^*) be product Riemannian manifolds of dimension $n \ge 3$. A conformal diffeomorphism f of M to M^* is characterized by the metric change (0.1) $g^* = \rho^{-2}\bar{g}$,

where ρ is a positive valued scalar field. In a previous paper [4], the present authors have proved the following

Theorem A. Let both M and M^* be complete, connected and simply connected product Riemannian manifolds of dimension $n \ge 3$. If there is a global non-homothetic conformal diffeomorphism f of Monto M^* , then the underlying manifold of M and M^* is the product $N_1 \times N_0 \times N_2$ of three complete Riemannian manifolds N_1 , N_0 and N_2 and the associated scalar field ρ with f depends on one part, say N_0 , only. If the metric forms of N_1 , N_0 and N_2 are denoted by ds_1^2 , ds_0^2 and ds_2^2 respectively, then (1) M is the product $M_1 \times N_2$, where M_1 is an irreducible complete Riemannian manifold, and the metric form of M is written as

 $(0.2) \qquad \qquad \rho^2 ds_1^2 + ds_0^2 + ds_2^2$

on the underlying manifold $N_1 \times N_0 \times N_2$, and (2) M^* is the product $N_1 \times M_2^*$, where M_2^* is an irreducible complete Riemannian manifold, and the metric form of M^* is written as

 $(0.3) ds_1^2 + \rho^{-2}(ds_0^2 + ds_2^2)$

on the same underlying manifold $N_1 \times N_0 \times N_2$.

Two-dimensional manifolds are regarded as Einstein ones. The purpose of the present paper is to prove the following

Theorem. In addition to the assumptions of Theorem A, we suppose that both the irreducible parts M_1 of M and M_2^* of M^* are Einstein manifolds. If there is a global non-homothetic conformal diffeomorphism of M onto M^* , then each part N_{α} ($\alpha=1,0,2$) of the underlying manifold $N_1 \times N_0 \times N_2$ of M and M^* is of dimension one and the curvatures of the two-dimensional parts M_1 and M_2^* are not constants.

As an immediate consequence of this Theorem, we can state

Corollary. If, on the manifolds M and M^* stated in Theorem A, the Ricci tensors of the irreducible parts M_1 of M and M_2^* of M^* are parallel, then there exists no global non-homothetic conformal diffeomorphism of M onto M^* .

This is a generalization of a theorem due to N. Tanaka [2] and T. Nagano [1], see also [5].

1. Let (M, \bar{g}) and (M^*, g^*) be product Riemannian manifolds of dimension $n \ge 3$ and f a conformal diffeomorphism of M to M^* characterized by (0.1). With respect to a local coordinate system (x^{ϵ}) of M, we shall denote the metric tensor \bar{g} of M by components $\bar{g}_{\mu\lambda}$, the Christoffel symbols by $\{_{\mu\lambda}^{\epsilon}\}$, the curvature tensor by $K_{\nu\mu\lambda}^{\epsilon}$, the Ricci tensor by $K_{\mu\lambda}$ and the scalar curvature by κ , where κ is defined by $n(n-1)\kappa = K_{\mu\lambda}\bar{g}^{\mu\lambda}$ for $n\ge 2$ and $\kappa=0$ for n=1. Here and hereafter, Greek indices run on the range 1 to n. Quantities of M^* corresponding to those of M under f are indicated by asterisking. Then we have in particular the transformation formulas of the Ricci tensors

(1.1) $K_{\mu\lambda}^{*} = K_{\mu\lambda} + \rho^{-1}(n-2)\bar{V}_{\mu}\rho_{\lambda} + \rho^{-1}\bar{g}_{\mu\lambda}\bar{V}_{\kappa}\rho^{\kappa} - \rho^{-2}(n-1)\bar{\Phi}\bar{g}_{\mu\lambda},$

where we have denoted the covariant differentiation with respect to \bar{g} by $\bar{\nu}$ and put $\rho_{\lambda} = \bar{\nu}_{\lambda} \rho$, $\rho^{\epsilon} = \bar{g}^{\lambda \epsilon} \rho_{\lambda}$ and $\Phi = \rho_{\epsilon} \rho^{\epsilon}$.

Under the assumptions of Theorem A, the underlying manifold of M and M^* is the same product manifold $N_1 \times N_0 \times N_2$. Let each part N_{α} be of dimension n_{α} ($\alpha = 1, 0, 2$), $n_1 + n_0 + n_2 = n$. There is a local coordinate system $(x^k) = (x^a, x^h, x^p)$ in M and M^* such that (x^a) , (x^h) and (x^p) are local coordinate systems of N_1 , N_0 and N_2 respectively. Latin indices run on the following ranges:

> a, b, c, $d=1, 2, \dots, n_1$; h, i, j, $k=n_1+1, \dots, n_1+n_0$; p, q, r, $s=n_1+n_0+1, \dots, n$; A, B, C, $D=1, 2, \dots, n_1, n_1+1, \dots, n_1+n_0$; P, Q, R, $S=n_1+1, \dots, n_1+n_0, n_1+n_0+1, \dots, n$.

In such a coordinate system, we denote the components of the metric tensors of N_1 , N_0 and N_2 by g_{cb} , g_{ji} and g_{rq} and the Christoffel symbols by Γ_{cb}^a , Γ_{ji}^b and Γ_{rq}^p respectively. Then the metric forms (0.2) of M and (0.3) of M^* are expressed as

$$ar{g}_{\mu\lambda}dx^{\mu}dx^{\lambda} \!=\!
ho^2 g_{cb}dx^c dx^b \!+\! g_{ji}dx^j dx^i \!+\! g_{rq}dx^r dx^q, \ g^*_{\mu\lambda}dx^{\mu}dx^{\lambda} \!=\! g_{cb}dx^c dx^b \!+\!
ho^{-2} g_{ji}dx^j dx^i \!+\!
ho^{-2} g_{rq}dx^r dx^q$$

respectively. Since ρ is a function of N_0 only, the Christoffel symbol ${r \atop \mu, \mu}$ of M has non-trivial components

(1.2) $\begin{cases} {}^{a}_{cb} = \Gamma^{a}_{cb}, \quad {}^{a}_{ci} = \rho^{-1} \rho_{i} \delta^{a}_{c}, \quad {}^{h}_{cb} = -\rho \rho^{h} g_{cb}, \\ {}^{h}_{ji} = \Gamma^{h}_{ji}, \quad {}^{p}_{rq} = \Gamma^{p}_{rq}, \end{cases}$

and Φ depends on x^h only. It follows from (1.2) that N_1 is totally umbilical and N_0 and N_2 are totally geodesic in M. The covariant differentiation $\overline{\nu}_{\mu}\rho_{\lambda}$ on M has non-trivial components

(1.3) $\bar{\nabla}_c \rho_b = \rho \Phi g_{cb}$ or $\bar{\nabla}_c \rho^a = \rho^{-1} \Phi \delta^a_c$, $\bar{\nabla}_j \rho_i = \nabla_j \rho_i$, where ∇_j is the covariant differentiation with respect to g_{ji} .

No. 5]

The Ricci tensors of N_1 , N_0 and N_2 will be denoted by R_{cb} , R_{ji} and R_{rg} respectively. Then the Ricci tensor $K_{\mu\lambda}$ of M has non-trivial components

 $K_{cb} = R_{cb} - [\rho V_h \rho^h + (n_1 - 1) \Phi] g_{cb},$ (1.4)

(1.5)
$$\begin{array}{c} R_{cb} = R_{cb} = L_{cb} + M_{b} + (R_{1} = 1), \\ R_{cb} = R_{cb} = L_{b} + M_{b} + (R_{1} = 1), \\ R_{cb} = R_{cb} = R_{cb} + R_{cb} +$$

(1.6)

The Ricci tensor $K^*_{\mu\lambda}$ of M^* has non-trivial components

- $K_{ch}^* = R_{ch}$ (1.7)
- $K_{ji}^* = R_{ji} + \rho^{-2} [\rho \nabla_n \rho^n (n_0 + n_2 1) \Phi] g_{ji} + (n_0 + n_2 2) \rho^{-1} \nabla_j \rho_i,$ (1.8)
- $K_{rg}^* = R_{rg} + \rho^{-2} [\rho \nabla_h \rho^h (n_0 + n_2 1) \Phi] g_{rg}.$ (1.9)

2. Let us prove Theorem. Components of quantities on the irreducible parts M_1 of M and M_2^* of M^* will be indicated by using indices A, B, C, \cdots and P, Q, R, \cdots respectively. If the parts M_1 and M_2^* are Einstein ones, then the Ricci tensors K_{CB} of M_1 and K_{RQ}^* of M_2^* are given by

(2.1) $K_{CB} = (n_1 + n_0 - 1)\kappa_1 \bar{g}_{CB},$ (2.2) $K_{RQ}^* = (n_0 + n_2 - 1)\kappa_2^* g_{RQ}^*,$

where κ_1 and κ_2^* are the scalar curvatures of M_1 and M_2^* respectively.

Since $\bar{g}_{cb} = \rho^2 g_{cb}$ and $\bar{g}_{ji} = g_{ji}$, it follows from (1.4), (1.5) and (2.1) that the Ricci tensors R_{cb} of N_1 and R_{ji} of N_0 are equal to

 $R_{cb} = [(n_1 - 1)\Phi + (n_1 + n_0 - 1)\rho^2 \kappa_1 + \rho \nabla_h \rho^h] g_{cb},$ (2.3)

 $R_{ji} = (n_1 + n_0 - 1)\kappa_1 g_{ji} + n_1 \rho^{-1} \nabla_j \rho_i$ (2.4)

respectively. For $n_1 = 1$, the scalar function in the brackets of (2.3) is equal to zero. For $n_1 \ge 2$, that is, dim $M_1 \ge 3$, the scalar curvature κ_1 of M_1 is a constant and hence the scalar function depends only on N_0 . Therefore the scalar function is a constant independently of the dimension of N_1 .

Since $g_{ji}^* = \rho^{-2} g_{ji}$ and $g_{qp}^* = \rho^{-2} g_{qp}$, the Ricci tensors R_{ji} of N_0 and R_{rq} of N_2 are written as

(2.5) $R_{ji} = [(n_0 + n_2 - 1)\rho^{-2}(\kappa_2^* + \Phi) - \rho^{-1}\nabla_h \rho^h]g_{ji} - (n_0 + n_2 - 2)\rho^{-1}\nabla_j \rho_i,$ $R_{rq} = [(n_0 + n_2 - 1)\rho^{-2}(\kappa_2^* + \Phi) - \rho^{-1}\nabla_h \rho^h]g_{rq}$ (2.6)

by virtue of (1.8), (1.9) and (2.2) respectively. We can also see that the scalar function in the brackets of (2.6) is a constant.

Comparing (2.4) with (2.5), we have the equation

(2.7)
$$(n-2)\nabla_{j}\rho_{i} = -[(n_{1}+n_{0}-1)\kappa_{1}-(n_{0}+n_{2}-1)\rho^{-2}(\kappa_{2}^{*}+\Phi) + \rho^{-1}\nabla_{h}\rho^{h}]\rho g_{ji}.$$

If dim $M_1 > 3$ or the scalar curvature κ_1 of M_1 for dim $M_1 = 2$ is a constant, then coefficient in the brackets of (2.7) is equal to a constant, say (n-2)k. The equation (2.7) is then reduced to

$$(2.8) \nabla_{j}\rho_{i} = -k\rho g_{ji}.$$

Since N_0 is totally geodesic in M_1 and M is the product $M_1 \times N_2$, any geodesic curve in N_0 is geodesic in M. Let Γ be a geodesic curve lying in N_0 and s the arc length of Γ . The ordinary derivatives with respect to s will be denoted by prime. The equation (2.8) is reduced to the ordinary differential one

(2.9) $\rho''(s) = -k\rho$ along Γ . According to the signature of k, we put k=0, $k=-c^2$ or $k=c^2$, where c is a positive constant. By a suitable choice of s, the solution of (2.9) along Γ is given by one of the following:

$$\rho(s) = \begin{cases} (1) \ as + b & \text{for } k = 0; \\ (2) \ a \ \exp cs, \ (3) \ a \ \sinh cs & \text{or} \quad (4) \ a \ \cosh cs & \text{for } k = -c^2; \\ (5) \ a \ \cos cs & \text{for } k = c^2, \end{cases}$$

where a and b are arbitrary constants. In the case (1), there is a geodesic curve Γ such that the solution along Γ is given by (1) with $a \neq 0$. Then $\rho(s) < 0$ on some interval of Γ . This contradicts to the completeness of N_0 and the fact that ρ is positive valued. We also see that the cases (3) and (5) do not occur.

Let Γ^* be the image $f(\Gamma)$ and s^* be the arc length of Γ^* such as $s^*=0$ corresponding to s=0. In the case (2), s and s^* are related by $ds^*/ds = \rho^{-1} = a^{-1} \exp(-cs)$,

or, by integration of this equation,

 $s^* = (1/ac)[1 - \exp(-cs)] < 1/ac.$

Therefore the arc length s^* of Γ^* is bounded as $s \to \infty$ along Γ . This is a contradiction (see [5]). In the case (4), s and s^* are related by $s^* = (2c/a)(\arctan \exp cs - \pi/4) < c\pi/2a$,

and this leads a contradiction too. Thus, if there is a global nonhomothetic conformal diffeomorphism of M onto M^* , then dim $M_1=2$, that is, $n_1=n_0=1$, and the curvature of M_1 is not constant. Similarly M_2^* should be a two-dimensional manifold with non-constant curvature.

References

- T. Nagano: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Japan, 11, 10-14 (1959).
- [2] N. Tanaka: Conformal connections and conformal transformations. Trans. Amer. Math. Soc., 92, 168-190 (1959).
- [3] Y. Tashiro: On conformal diffeomorphisms between product Riemannian manifolds. Proc. Japan Acad., 57A, 38-41 (1981).
- [4] Y. Tashiro and I.-B. Kim: Conformally related product Riemannian manifolds. ibid., 58A, 204-207 (1982).
- Y. Tashiro and K. Miyashita: On conformal diffeomorphisms of complete Riemannian manifolds with parallel Ricci tensor. J. Math. Soc. Japan, 23, 1-10 (1971).