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1. Introduction. Let F Rn-+R be a continuously differentiable
mapping. Consider an n-dimensional autonomous differential equa-
tion of the form

( 1 ) du--F(u), u e Rn.
dt

Suppose that (1) has at least two equilibrium points a and . Under
some conditions it is shown that the corresponding difference equa-
tions (Euler’s scheme) for (1) are chaotic in the sense of Li and Yorke
[1]. The theorem of Marotto [2] will be used to prove the existence
of chaos. More precisely, it will be shown that both and are snap-
back repellers.

This work is motivated by a theorem proven by Yamaguti and
Matano [3] concerning scalar differential equations. I would like to
thank Prof. M. Yamaguti for his interest and encouragement.

2. Notation and theorem. Euler’s difference scheme for (1)
takes the form

(2)

that is,

u/=u+zltF(u, u, ..., u)

I,/=u+AtF(u, u, ..., u)

u + u +ttF(u).
Letting z/t=s and G=Id+sF, (2) implies
( 3 ) u 1= G,(u).

For differentiable function f, let if(x) denote the Jacobian matrix
of f at x e R and det if(x) its determinant. Note that G’(x) E+ sF’(x)
for all x e R where E is a unit matrix. Let B(x, r) denote the closed
ball in R of radius r centered at x and I[x[I behe usual Euclidean
norm of x in R. For a square matrix A, let A* denote the adjoint
matrix of A. Our theorem can now be stated as follows:

Theorem. Let F be continuous differentiable in R. Suppose
there exist :/= such that F() =F(v) =0, det F’() :/=0 and det F’() g=0.

Then there exists a positive constant c such that for any s>c the

difference equation (3) is chaotic in the sense of Li and Yorke.
Remark. The condition in the above theorem is a stable property

under small perturbations of F.
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3. Proo o the theorem. Before proving theorem we shall
present three preliminary emmas.

Lemma 1. There exist rO and cO such that det G’(x):O for
any s c and any x e B(, r) [ B(, r,).

Proof. From the assumption on F, we can find rl0 such that
det F’(x): 0 for any x e B(, r) B(, r,). If the lemma is false, then
there exist two sequences SnO and x e B(, r)B(v, r) such that
s-oo as noo and det G(Xn)=O. Since G’=E+sF’, we have
det [E/s+F’(x)]=O. Without loss of generality we can assume that
xx*e B(,r)UB(v,r,)as nc. Thus, letting n tend to infinity,
we find that det F’(x*)=0. This contradiction completes the proof.

Lemma 2. For any 31, there exist r2O and c()O such that
I[G,(x)-G(y)II_ I[x-Yl[ for any s>c2() and any x, y e B(,

Proof. Since det F’()*F’()=(det F’()) :/: 0, the least eigenvalue

min O:f a positive-semidefinite symmetric matrix F’(a)*F’() is positive.
Hence

for all x e R,
and there exists r2 >0 such that

Therefore

Hence

for any x e B(, r).

F(x) F(y) 11o F’(y+ t(x y))(x y)dt_
F’(u)(x-- y)]1 -//min y

--1Vm iI--Yll for any x, y e B(, r).
--2

[]G.(x)-G(y)[l_s

2where s> c(6) /]m,-----.(1 + 3).

Lemma 3. For a suciently small open neighbourhood U of
and any bounded set W, there exists c(U, W)0 such that the equation
G,(u)=w has at least one solution u e U for any sc(U, W) and any
weW.

Proof. Without loss of generality we can assume that Fie is a
homeomorphism. Since is an isolated zero in U, we have

deg (0, F, U)=sign det F’() 1 or 1.
Now assume that ZoUo+ F(uo) poWo or some uo e U, w0 e W and Z 0.
Then
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[o--
IF(uo) > infeo F(u)II ---Iu(U, W)>O.
Uo-Wo supe,e

Hence we obtain twe(tdd+F)(3U) for any we W and any
<z(U, W).

Consider now the homotopy vx+F(x), (, x)e [0,/] U and by the
homotopy property of mapping degree we have

deg (lzw, [Id+F, U)=deg (0,F, U) :/:0.
Therefore there exists u e U such that

(pld+F)(u)=lw, that is, G/(u)=w.
This completes the proof.

Note that the similar arguments hold for . Now we are ready
for the proof of the theorem. Select suffieiently small open neighbour-
hoods U, V of , v respeetively such that U fq V= and Lemma 3 holds
for both and v. Let r*=min (r, r) and e*=max (e, e(,), e(U, V),
e(V, U)). Without loss of generality we can assume that

UcB(, r*) and VcB(v, r*).
By Lemma 3, for any s>e*, there exist v, e V and u, e U such that
G,(v,)= and G,(u,)=v,. Since detG’,(u,):/:0 and detG’,(v,):/:0 by
Lemma 1, we can find r,>0 such that B(u,, r,)cB(, r*), G,(B(u,,
V, G(B(u,r))U, and both Glu,, and Gl,u,, are homeo-
morphisms. Finally define compact sets {B}_<2 as follows"

B G,(B(u,, r,)), B2= G(B(u,, r,)) and
B_ G;(B(u,, r,)) for/c_> 0,

since G; is well-defined by Lemma 2. This shows that is a snap-
back repeller. Obviously same argument holds for .

4. Application. We shall attempt to apply our theorem to
quadratic differential systems of the form

d () ((al-bllul ....., blnTn)l )( 4 ) dt F(u,, ..., Un)--
\(an--b,u bnnUn)Un/

These systems include prey-predator and competition models which
are discussed in [4]. Let A=(a,...,a), B=(b) and 0=(0,...,0).
If A :/:0 and det B:/:0, then one can easily show that (4) has at least
two equilibrium points 0 and B-A. Moreover ct F’(O)=a.. "an and
det F’(B-A)=( 1) n det B where B-A=(, ..., ). Therefore
the conclusion of the theorem holds for (4) if a,...a...:/:0 and
det B :/: 0.

Finally note that the condition that F has at least two zeros can
be weakened in some cses.
For example,
( 5 ) dx/dt= 1-e, x e R.
This scalar differential equtio.n has unique equilibrium point 0
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which is asymptotically stable. However one can easily show that
there exists a positive constant Co such that or each ztc0 Euler’s
scheme for (5) is chaotic in some invarient interval.
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