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5. On Preimage and Range Sets of Meromorphic Functions*)

By Fred GROSS**) and Chung-Chun YANG***)

(Communicated by K.6saku YOSIDA, M. $. A., Jan. 12, 1982)

1. Introduction. We say that two meromorphic functions f
and g share a value c provided that f(z)=c::=g(z)--c (regardless of
multiplicities). In this paper following Gundersen [3] we shall use the
abbreviation CM=counting multiplicities and IM ignoring multiplic-
ities. In [3] it is shown that if two meromorphic functions f and g
share three distinct values CM and share a fourth value IM, then they
share all four values CM. Several growth relationships between f
and g were also established in [3] when they share 3 or 4 values.
Actually going back to 1929 the founder of value distribution theory
R. Nevanlinna [6] proved that if two nonconstant meromorphic func-
tions f and g share 5 distinct values (possibly including c) IM, then
f and g must be identical. Thus, the study of the relationship between
two meromorphic functions via the preimage sets of several distinct
values in the range has a long history. However, only recently, have
the studies been extended to include several preimage sets of several
disjoint sets of (range) values. The first author of the present paper
has already made some contributions on this aspect in [2]. In this
paper we shall continue the study and provide some answers to some
of the open questions raised in [2], and more importa.ntly we hope that
the present results will stimulate additional research and interest in
this area.

1.1 Definitions and notations. It is well-known that given any
complex number c, every countable discrete set S is the preimage set
of c under a certain meromorphic function f. To avoid this trivial
case we define a set S to be a nontrivial preimage set (NPS) if S is a
countable discrete set and there exists at least one nonlinear entire
function f and a finite (range) set T of distinct values with
(where ]TI denotes the cardinality of T) such that f-(T)=S. Note
that the elements in S need not be distinct. It is natural to ask: does
there exist a discrete set S which is not an NPS at all? This can be
answered in the affirmative. One can exhibit such sets explicitly ac-
cording to an argument used in [8]. A generalization of this result
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was stated in [2]. Actually given any finite set S, one can add an
infinite discrete set S such that S S= and S [2 S is not an NPS.
Obviously i S is an NPS or some entire unction f then S is also an
NPS for any unction ot the orm o af+ b, where a and b are con-
stants and a=/=0. Thus we call S a unique NPS (or UNPS) if S is an
NPS and any two entire functions f and g having S as their NPS are
linearly dependent i.e., g=af+b or some constants a, b. We now
introduce some analogous definitions or the range sets. T is said to
be a unique range set (URS) if T is a discrete set such that i any two
entire unctions f and g satisly f-(T) g-(T) CM, then f_--__ g.

1.2 Infinite NPS and URS. Theorem 1. Given any discrete set
{a} there exists a discrete set {bn} such that S--{ebn} J {b} is not an
NPS.

Proof. Choose {b} such that b=b=b, b=b=b, ., b/
=b/=bn/,... with b4=b,=/=b... =b/=/=b/,,... such that

lira N(r, {an})/N(r, {bn}) =0,

where Y(r, {c})=.l" {n(t, {c})/t}dt and n(t, {c}) is the number oi points

o {c} satisfying Ic]<t. It is readily seen that ff the set S= {a} kJ {b}
is an NPS tor some entire function f, then f would have at least two
distinct complete ramified values o multiplicity equal to 3. This is
impossible according to the Nevanlinna’s theory on ramified values
(more precisely, see [4, Theorem 2.4]).

Remark. This also answers question 8 raised in [2].
There do exist two distinct unctions f and g having the same

NPS. For instance, S- {0, +_n/2, n= 1, 2, } is an NPS for sin z
and cos z with the same range set T= {0, --1, 1}. The problem of find-
ing a UNPS is more difficult and seems to require some extension of
the classical Nevanlinna ramification theorem to algebroid unctions.

Theorem 2. Let f be an entire function of finite nonintegral
order p with p 1. Assume that all the zeros of f are real and simple.
Let

S={ f3()-I =0}.
Then S is a UNPS.

Proof. Clearly S is an NPS of f. Let g be another entire func-
tion which has S as its NPS. Then accordingly, we have
( 1 ) f3--1 =p(g)e()
where p(z) is a polynomial with 2 or more distinct roots, q(z) is a poly-
nomial with degree less than p. It follows from (1) that

T(r, g)--O(1)T(r, f)
and

T(r, e)=o(1)T(r, g)
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Rewriting (1) as
( 2 ) f3 p(g)e + 1 e[p(g)+ e- ].
Now p(g)+ e- is a function in g with coefficients whose growth is much
smaller than that of g. Let’s assume that (z), (z)...fl(z) are k
distinct algebraic roots of p(g)+e-=O. That is
( 3 ) P(g)-4- e-q=- Co(g--fl)(g--2)n"" (g__k)n:,
where Co is a nonzero constant, and n,, n, ..., n are nonnegative inte-
gers. Now if e-q is not a constant, then by taking partial derivative
with respect to g on both sides of (3) one can conclude easily that all
the n(i=1,2, ...,k) are no greater than one, i.e., n<l. Further-
more, according to a result of C. Osgood’s [7] g can not have two or
more algebroid functions which are complete ramified (of multiplicity

> 3). Thus we conclude that one and only one of the n is equal to 1,
the remaining ones being equal to zero. This is impossible.

Hence we conclude that e-q must be a constant. Thus
f C (g o:1)’%g o ) (g o: )’%

where a, a, ., a are constants. Since an entire unction which
takes on two distinct finite values only on a straight line is of order
no greater than 1 [1]. It follows from this and the assumption on the
zeros of f that the a’s must be equal. Hence we have

f=co(g--)
for some constant a and integer n. By virtue of the assumption that
all the zero of f are simple it follows that n=3. Hence

f= clo/(g a) ag+ b

for some constants a and b. This completes the proof of he theorem.
We now prove he existence of an infinite URS.
Theorem 3. Let T={le+=0}, then T is URS.
Proof. Suppose that there are two nonconstant entire functions

f and g such that
( 4 ) f-l(T)--g-l(T).
Then, accordingly, we have
( 5 ) e +f--(e + g)e",
where a is an entire function.

It follows rom this and Nevanlinna’s second undamental theorem
ior three deficient functions (see e.g., [4, p. 47]), that
( 6 ) T(r, e) N(r, 1 / e -- f) N(r, 1 / e + g) T(r, e)
as r--o r e E, E a set o r values of finite linear measure.

By rewriting (5) we have
( 7 ) e--e/"--ge"= --f.
This is the so-called Borel type of identity. It is now easy to verify,
with (6) in mind, that the conditions for the generalized Borel’s lemma
of impossibility of certain identity discussed in [5] are satisfied. Con-
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sequently, one can derive rom (7) that f-g=__c, a constant. This and
(7) yields f----g as claimed.

1,: Open questions, Question 1. Does there exist an infinite
NPS, S such that for any nonempty finite set $1, S\S1 (in this case SI
cS) or S S remains an NPS?

Question 2. Given any discrete set S which is an NPS is it always
possible to add or remove only a finite set F such that SF or S\F
becomes an NPS? Where in the union case some elements will be
counted according to its number of appearances in both S and F?

Question 3. Does there exist a UNPS for an entire function of
integral order ?

Question 4. To each given number p O<p, does there exist
a UNPS such that its corresponding entire function has an order equal
to p?

An entire function F is called prime if F==_f(g) for some entire
functions f and g then it implies either f or g must be linear.

Question 5. One can show easily that every zero set of a prime
entire function of order has less than 1 is not an NPS. How about
the zero set of a prime entire function of nonintegral order > 17

Clearly this is not true in general for integral order. For instance,
F(z) e(e l) is a prime entire function of order 2 and e-l----p(g)
where

p(z) z=- 1 and g(z) e/.
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